22 research outputs found

    Novel approaches to iron chelation therapy: novel combinations and novel compounds

    Get PDF
    Iron overload is an inevitable consequence of repeated blood transfusions required to sustain life in a wide array of haematological conditions such as thalassaemia, aplastic anaemia, and myelodysplastic syndromes (MDS). Without iron chelation therapy, death from cardiotoxic effects of iron overload usually ensues in the second decade. Iron chelation therapy with subcutaneous Desferrioxamine (DFO) infusions at least 5 nights per week has been shown unequivocally to prolong life expectancy in thalassaemia major. However, although this molecule is remarkably free of toxic side effects at treatment doses, patient compliance is often poor, and iron overload still leads to death today. One of the scopes of this Ph.D. was to develop a cellular model that would allow the testing of novel chelating agents used alone or in combination with established chelators. Our in vitro model of iron overload was able to elucidate several principles regarding the interactions of chelators within cells. It allowed for the first time a detailed interrogation of synergy as opposed to additivity of action of licensed chelators when used in combination, which has now been published. This model is also relevant to the development of new chelators and was used to demonstrate the iron binding properties of Eltrombopag (ELT), a drug used to manage ITP, at clinically achievable concentrations. ELT is a powerful intracellular iron chelator that decreases storage iron and enhances iron removal when in combination with commercially available iron chelators. In clinical use, donation of chelated iron by ELT to these chelators offers established routes for elimination of chelated iron. Furthermore, we extensively investigated the iron mobilising properties of the naturally occurring flavonoid quercetin and its principle metabolites. For the first time we showed that quercetin and its metabolites can act as a shuttle when combined with licensed chelators and provided a unique structure-function analysis of flavonoids with regards to iron and ferritn mobilisation and antioxidant capacity as a function of Fe(II) binding. A further goal of this thesis was to establish an iron-overloaded humanised thalassaemia mouse model that could be used to examine whether the same principles which determine iron release from cell cultures also influence the oral efficiency of iron chelators, in vivo. We utilised iron dextran to achieve cardiac iron loading confirmed by histology and MRI investigations. Iron overloaded mice were treated with a combination of the flavonoid quercetin and the iron chelator Deferasirox (DFX), and we established the value of this in combination in terms of cardiac iron mobilisation. Our novel humanised β thalassaemia ion-overloaded mouse model demonstrating cardiac iron loading is a first-in-kind development, and the novel application of MRI will provide a useful tool for studying iron chelators, the pathophysiology and disease progression, blood transfusion regimens and cellular/gene therapy in iron overload in the future. Our findings in vivo support the contention that our cellular model is a useful screening tool for new compounds, both for toxicity and efficacy

    Residual erythropoiesis protects against myocardial hemosiderosis in transfusion-dependent thalassemia by lowering labile plasma iron via transient generation of apotransferrin

    Get PDF
    Cardiosiderosis is a leading cause of mortality in transfusion-dependent thalassemias. Plasma non-transferrin-bound iron and its redox-active component, labile plasma iron, are key sources of iron loading in cardiosiderosis. Risk factors were identified in 73 patients with or without cardiosiderosis. Soluble transferrin receptor-1 levels were significantly lower in patients with cardiosiderosis (odds ratio 21). This risk increased when transfusion-iron loading rates exceeded the erythroid transferrin uptake rate (derived from soluble transferrin receptor-1) by >0.21mg/kg/d (odds ratio 48). Labile plasma iron was >3-fold higher where this uptake rate threshold was exceeded, but non-transferrin-bound iron and transferrin saturation were comparable. Cardiosiderosis risk was also decreased in patients with low liver iron, ferritin and labile plasma iron, or high bilirubin, reticulocyte counts or hepcidin. We hypothesized that high erythroid transferrin uptake rate decreases cardiosiderosis through increased erythroid re-generation of apotransferrin. To test this, iron uptake and intracellular reactive oxygen species were examined in HL-1 cardiomyocytes under conditions modelling transferrin effects on non-transferrin-bound iron speciation with ferric citrate. Intracellular iron and reactive oxygen species increased with ferric citrate concentrations especially where iron-to-citrate ratios exceeded 1:100, i.e. conditions favoring kinetically labile monoferric rather than oligomer species. Excess iron-binding equivalents of apotransferrin inhibited iron uptake, decreased intracellular reactive oxygen species and labile plasma iron, under conditions favoring monoferric species. In conclusion, high transferrin iron utilisation, relative to the transfusion-iron load rate, decreases the cardiosiderotic risk. A putative mechanism is the transient re-generation of apotransferrin by an active erythron, rapidly binding labile plasma iron-detectable ferric monocitrate species

    Outcome predictors for maternal red blood cell alloimmunisation with anti-K and anti-D managed with intrauterine blood transfusion

    Get PDF
    Red blood cell (RBC) alloimmunisation with anti-D and anti-K comprise the majority of cases of fetal haemolytic disease requiring intrauterine red cell transfusion (IUT). Few studies have investigated which haematological parameters can predict adverse fetal or neonatal outcomes. The aim of the present study was to identify predictors of adverse outcome, including preterm birth, intrauterine fetal demise (IUFD), neonatal death (NND) and/or neonatal transfusion. We reviewed the records of all pregnancies alloimmunised with anti-K and anti-D, requiring IUT over 27 years at a quaternary fetal centre. We reviewed data for 128 pregnancies in 116 women undergoing 425 IUTs. The median gestational age (GA) at first IUT was significantly earlier for anti-K than for anti-D (24·3 vs. 28·7 weeks, P = 0·004). Women with anti-K required more IUTs than women with anti-D (3·84 vs. 3·12 mean IUTs, P = 0·036) and the fetal haemoglobin (Hb) at first IUT was significantly lower (51.0 vs. 70.5 g/l, P = 0·001). The mean estimated daily decrease in Hb did not differ between the two groups. A greater number of IUTs and a slower daily decrease in Hb (g/l/day) between first and second IUTs were predictive of a longer period in utero. Earlier GA at first IUT and a shorter interval from the first IUT until delivery predicted IUFD/NND. Earlier GA and lower Hb at first IUT significantly predicted need for phototherapy and/or blood product use in the neonate. In the anti-K group, a greater number of IUTs was required in women with a higher titre. Furthermore, the higher the titre, the earlier the GA at which an IUT was required in both groups. The rate of fall in fetal Hb between IUTs decreased, as the number of transfusions increased. Our present study identified pregnancies at considerable risk of an unfavourable outcome with anti-D and anti-K RBC alloimmunisation. Identifying such patients can guide pregnancy management, facilitates patient counselling, and can optimise resource use. Prospective studies can also incorporate these characteristics, in addition to laboratory markers, to further identify and improve the outcomes of these pregnancies

    Non-invasive MRI biomarkers for the early assessment of iron overload in a humanized mouse model of β-thalassemia

    Get PDF
    β-thalassemia (βT) is a genetic blood disorder causing profound and life threatening anemia. Current clinical management of βT is a lifelong dependence on regular blood transfusions, a consequence of which is systemic iron overload leading to acute heart failure. Recent developments in gene and chelation therapy give hope of better prognosis for patients, but successful translation to clinical practice is hindered by the lack of thorough preclinical testing using representative animal models and clinically relevant quantitative biomarkers. Here we demonstrate a quantitative and non-invasive preclinical Magnetic Resonance Imaging (MRI) platform for the assessment of βT in the γβ(0)/γβ(A) humanized mouse model of βT. Changes in the quantitative MRI relaxation times as well as severe splenomegaly were observed in the heart, liver and spleen in βT. These data showed high sensitivity to iron overload and a strong relationship between quantitative MRI relaxation times and hepatic iron content. Importantly these changes preceded the onset of iron overload cardiomyopathy, providing an early biomarker of disease progression. This work demonstrates that multiparametric MRI is a powerful tool for the assessment of preclinical βT, providing sensitive and quantitative monitoring of tissue iron sequestration and cardiac dysfunction- parameters essential for the preclinical development of new therapeutics

    A Novel Test for Gene-Ancestry Interactions in Genome-Wide Association Data

    Get PDF
    Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading principal components of the empirical genotype matrix to cluster individuals into “ancestry groups” and then look for evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups. When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-collected data sets. Our method can be used to detect associations between genetic variants and disease that have been obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions

    Iron uptake and transport across physiological barriers

    Full text link

    Eltrombopag: a powerful chelator of cellular or extracellular iron(III) alone or combined with a second chelator.

    No full text
    Eltrombopag (ELT) is a thrombopoietin receptor agonist reported to decrease labile iron in leukemia cells. Here we examine the previously undescribed iron(III)-coordinating and cellular iron-mobilizing properties of ELT. We find a high binding constant for iron(III) (log β2=35). Clinically achievable concentrations (1 µM) progressively mobilized cellular iron from hepatocyte, cardiomyocyte, and pancreatic cell lines, rapidly decreasing intracellular reactive oxygen species (ROS) and also restoring insulin secretion in pancreatic cells. Decrements in cellular ferritin paralleled total cellular iron removal, particularly in hepatocytes. Iron mobilization from cardiomyocytes exceeded that obtained with deferiprone, desferrioxamine, or deferasirox at similar iron-binding equivalents. When combined with these chelators, ELT enhanced cellular iron mobilization more than additive (synergistic) with deferasirox. Iron-binding speciation plots are consistent with ELT donating iron to deferasirox at clinically relevant concentrations. ELT scavenges iron citrate species faster than deferasirox, but rapidly donates the chelated iron to deferasirox, consistent with a shuttling mechanism. Shuttling is also suggested by enhanced cellular iron mobilization by ELT when combined with the otherwise ineffective extracellular hydroxypyridinone chelator, CP40. We conclude that ELT is a powerful iron chelator that decreases cellular iron and further enhances iron mobilization when combined with clinically available chelators
    corecore