6 research outputs found
Ti-25Nb-25Ta alloy treated by plasma electrolytic oxidation in phosphoric acid for implant applications
Among titanium alloys with non-toxic elements, the Ti-25Nb-25Ta alloy has good elastic behavior for applications in osseous implants, biocompatibility, and excellent corrosion resistance. The present study aimed to better the biocompatibility characteristics of Ti-25Nb-25Ta alloy modifying its surface through Plasma Electrolytic Oxidation (PEO) treatment. The formed oxide coating is amorphous and composed of two distinct porous formations: smaller hole-shaped pores and larger volcano-like pores. The regions with the formation of smaller pores and in the hole shaped presented the highest atomic percentage of the chemical element phosphorus. Nanoindentation tests have shown that the hardness of the Ti-25Nb-25Ta alloy is slightly lower than the commercially pure grade 2 titanium (a material used as reference), while elastic modulus measurements of Ti-25Nb-25Ta presented more suitable values for implant application (lower values when compared with titanium reference). After PEO treatment there were significant mechanical surface improvements (increased fairly surface hardness and decreased elastic modulus) for application in osseous tissue. Despite the Ti-25Nb-25Ta alloy presented excellent characteristics for applications in hard biological tissues, the PEO treatment better its features.Keywords: Titanium alloy, Ti-25Nb-25Ta, nanoindentation, mechanical properties, Plasma Electrolytic Oxidation.
Chalcone Derivatives 4âČ-Amino-1-Naphthyl-Chalcone (D14) and 4âČ-Amino-4-Methyl-1-Naphthyl-Chalcone (D15) Suppress Migration and Invasion of Osteosarcoma Cells Mediated by p53 Regulating EMT-Related Genes
Osteosarcoma (OS) is a primary malignant bone tumor that mainly affects children, adolescents, and young adults. The inhibition of metastasis is a main strategy of OS therapy since the development of metastatic disease due to drug resistance remains the most important cause of death from this cancer. Considering the severe side effects of current OS chemotherapy, the identification of anti-metastatic drugs with reduced toxicity is of great interest. Chalcones are polyphenols with a basic structure consisting of an α-, β-unsaturated carbonyl system linking two aryl rings. These compounds exhibit anticancer activity against a variety of tumor cell lines through multiple mechanisms, including the regulation of the tumor-suppressor protein p53 and its target genes. An important process regulated by p53 is epithelial-mesenchymal transition (EMT), which facilitates tumor metastasis by conferring migratory and invasive properties to cancer cells. The activation of p53 can revert EMT and reduce migration and invasion. This study aimed to examine the inhibitory effects of two 4′-aminochalcones on the migration/invasion of the U2OS (p53+/+) and SAOS-2 (p53−/−) OS cell lines as well as the underlying molecular mechanisms. Cell viability was examined by MTT assay. Transwell assays were used to evaluate the migratory and invasive ability of the cells. The two 4′-aminochalcones showed low capacity to inhibit the viability of OS cells independent of p53 status, but preferentially suppressed the migration of U2OS cells and of a SAOS-2 cell line expressing p53. Invasion was strongly inhibited by both chalcones independent of p53 status. RT-PCR, zymography, and Western blot were used to study the expression of matrix metalloproteinases and EMT markers after treatment with the chalcones. The results indicated that the 4′-aminochalcone-induced antimigratory and anti-invasive effects are potentially associated with the inhibition of extracellular matrix (ECM) enzymatic degradation in OS cells and with the modulation of EMT genes. These effects probably result from the induced increase of p53 protein expression by the two chalcones. In conclusion, chalcones D14 and D15 have potential anti-metastatic activity mediated by p53 that can be exploited for OS treatment
The Curcumin Analog CH-5 Exerts Anticancer Effects in Human Osteosarcoma Cells via Modulation of Transcription Factors p53/Sp1
Curcumin is a potential anticancer drug with poor bioavailability, which limits its clinical use as a therapeutic agent. The aim of this study was a preliminary evaluation of the curcumin analogue CH-5 as a cytotoxic agent in human osteosarcoma cell lines U2OS, MG-63, and Saos-2. CH-5 inhibited cell viability at lower concentrations than curcumin, leading to the induction of apoptosis. The cellular levels of the transcription factors p53 and Sp1 affect the expression of cellular pathways that lead to apoptosis. CH-5 increased p53 protein levels in U2OS cells and reduced Sp1 levels, with a consequent effect on the expression of their target genes DNA methyltransferase 1 (DNMT1) and growth arrest and DNA damage-inducible 45 alpha gene (Gadd45a). CH-5 repressed DNMT1 and increased Gadd45a mRNA expression, which was dependent on p53, as this effect was only observed in the colorectal cancer cell line HCT116 with active p53, but not in the isogenic p53-deficient HCT116 cells. CH-5 also reduced the protein levels of DNMT1, which led to the upregulation of Gadd45a. These results suggest that CH-5 has potentially higher anticancer activity than curcumin, which is associated with the expression of apoptosis-associated genes regulated by the transcription factors Sp1 and p53. Future work on CH-5 will define the therapeutic potential of this compound in vivo
Development, Characterization and Cell Viability Inhibition of PVA Spheres Loaded with Doxorubicin and 4âČ-Amino-1-Naphthyl-Chalcone (D14) for Osteosarcoma
Chalcones (1,3-diaryl-2-propen-1-ones) are naturally occurring polyphenols with known anticancer activity against a variety of tumor cell lines, including osteosarcoma (OS). In this paper, we present the preparation and characterization of spheres (~2 mm) from polyvinyl alcohol (PVA) containing a combination of 4âČ-Amino-1-Naphthyl-Chalcone (D14) and doxorubicin, to act as a new polymeric dual-drug anticancer delivery. D14 is a potent inhibitor of osteosarcoma progression and, when combined with doxorubicin, presents a synergetic effect; hence, physically crosslinked PVA spheres loaded with D14 and doxorubicin were prepared using liquid nitrogen and six freezeâthawing cycles. Physical-chemical characterization using a scanning electron microscope (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) presented that the drugs were incorporated into the spheres via weak interactions between the drugs and the polymeric chains, resulting in overall good drug stability. The cytotoxicity activity of the PVA spheres co-encapsulating both drugs was tested against the U2OS human osteosarcoma cell line by 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay, and compared to the spheres carrying either D14 or doxorubicin alone. The co-delivery showed a cytotoxic effect 2.6-fold greater than doxorubicin alone, revealing a significant synergistic effect with a coefficient of drug interaction (CDI) of 0.49. The obtained results suggest this developed PVA sphere as a potential dual-drug delivery system that could be used for the prominent synergistic anticancer activity of co-delivering D14 and doxorubicin, providing a new potential strategy for improved osteosarcoma treatment
Curcumin Analog CH-5 Suppresses the Proliferation, Migration, and Invasion of the Human Gastric Cancer Cell Line HGC-27
Gastric cancer is one of the most frequent malignant tumors in the world. The majority of patients are diagnosed with metastatic gastric cancer, which has a low survival rate. These data reinforce the importance of studying the anticancer activity of new molecules with the potential to suppress gastric cancer metastasis. Curcumin is a well-studied compound that has demonstrated anti-metastatic effects. Here we investigated if CH-5, a curcumin derivative compound, has anti-metastatic properties in the human gastric cancer cell line HGC-27. Firstly, we found that CH-5 decreased viability and induced apoptosis in HGC-27 cells in a dose-dependent manner. Additionally, CH-5 suppressed the migration and invasion of HGC-27 cells by downregulating the expression and collagenase activity of matrix metalloproteinase 2 in a dose-dependent manner. In conclusion, CH-5 showed anticancer activities, including the induction of apoptosis, and the suppression of migration and invasion in HGC-27 cells, suggesting that CH-5 can be a lead molecule for the development of anti-metastatic drugs for gastric cancer therapy