11 research outputs found

    Different Methods in HPV Genotyping of Anogenital and Oropharyngeal Lesions: Comparison between VisionArray® Technology, Next Generation Sequencing, and Hybrid Capture Assay

    Get PDF
    (1) Background: Human papillomaviruses (HPVs) are known to be related to the development of about 5% of all human cancers. The clinical relevance of HPV infection has been deeply investigated in carcinomas of the oropharyngeal area, uterine cervix, and anogenital area. To date, several different methods have been used for detecting HPV infection. The aim of the present study was to compare three different methods for the diagnosis of the presence of the HPV genome. (2) Methods: A total of 50 samples were analyzed. Twenty-five of them were tested using both next generation sequencing (NGS) and VisionArray® technology, the other 25 were tested using Hybrid Capture (HC) II assay and VisionArray® technology. (3) Results: A substantial agreement was obtained using NGS and VisionArray® (κ = 0.802), as well as between HC II and VisionArray® (κ = 0.606). In both analyses, the concordance increased if only high risk HPVs I(HR-HPVs) were considered as “positive”. (4) Conclusions: Our data highlighted the importance of technical choice in HPV characterization, which should be guided by the clinical aims, costs, starting material, and turnaround time for results

    BRAF and MLH1 Analysis Algorithm for the Evaluation of Lynch Syndrome Risk in Colorectal Carcinoma Patients: Evidence-Based Data from the Analysis of 100 Consecutive Cases

    Get PDF
    settingsOrder Article Reprints Open AccessFeature PaperArticle BRAF and MLH1 Analysis Algorithm for the Evaluation of Lynch Syndrome Risk in Colorectal Carcinoma Patients: Evidence-Based Data from the Analysis of 100 Consecutive Cases by Thais Maloberti 1,2,†ORCID,Antonio De Leo 1,2,†ORCID,Viviana Sanza 2,Lidia Merlo 2,Michela Visani 1ORCID,Giorgia Acquaviva 1,Sara Coluccelli 1,2ORCID,Annalisa Altimari 2,3,Elisa Gruppioni 2,3,Stefano Zagnoni 2,3,Daniela Turchetti 4,Sara Miccoli 4,Michelangelo Fiorentino 5,6ORCID,Antonietta D’Errico 3ORCID,Dario de Biase 7,*,‡ORCID andGiovanni Tallini 1,2,‡ORCID 1 Department of Experimental, Diagnostic and Specialty Medicine, Anatomic Pathology Unit-University of Bologna Medical Center, 40138 Bologna, Italy 2 Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy 3 Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy 4 Unit of Medical Genetics, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy 5 Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy 6 Pathology Department, Maggiore Hospital, 40133 Bologna, Italy 7 Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy * Author to whom correspondence should be addressed. † These authors contributed equally to this work. ‡ These authors contributed equally to this work. J. Mol. Pathol. 2022, 3(3), 115-124; https://doi.org/10.3390/jmp3030011 Received: 30 March 2022 / Revised: 27 May 2022 / Accepted: 21 June 2022 / Published: 25 June 2022 (This article belongs to the Collection Feature Papers in Journal of Molecular Pathology) Download Browse Figures Versions Notes Abstract Several causes may lead to CRC, either extrinsic (sporadic forms) or genetic (hereditary forms), such as Lynch syndrome (LS). Most sporadic deficient mismatch repair (dMMR) CRC cases are characterized by the methylation of the MLH1 promoter gene and/or BRAF gene mutations. Usually, the first test performed is the mismatch repair deficiency analysis. If a tumor shows a dMMR, BRAF mutations and then the MLH1 promoter methylation status have to be assessed, according to the ACG/ASCO screening algorithm. In this study, 100 consecutive formalin-fixed and paraffin-embedded samples of dMMR CRC were analyzed for both BRAF mutations and MLH1 promoter methylation. A total of 47 (47%) samples were BRAF p.V600E mutated, while MLH1 promoter methylation was found in 77 cases (77.0%). The pipeline “BRAF-followed-by-MLH1-analysis” led to a total of 153 tests, while the sequence “MLH1-followed-by-BRAF-analysis” resulted in a total of 123 tests. This study highlights the importance of performing MLH1 analysis in LS screening of BRAF-WT specimens before addressing patients to genetic counseling. We show that MLH1 analysis performs better as a first-line test in the screening of patients with LS risk than first-line BRAF analysis. Our data indicate that analyzing MLH1 methylation as a first-line test is more cost-effective

    Multi-Gene Next-Generation Sequencing Panel for Analysis of BRCA1/BRCA2 and Homologous Recombination Repair Genes Alterations Metastatic Castration-Resistant Prostate Cancer

    Get PDF
    : Despite significant therapeutic advances, metastatic CRPC (mCRPC) remains a lethal disease. Mutations in homologous recombination repair (HRR) genes are frequent in mCRPC, and tumors harboring these mutations are known to be sensitive to PARP inhibitors. The aim of this study was to verify the technical effectiveness of this panel in the analysis of mCRPC, the frequency and type of mutations in the BRCA1/BRCA2 genes, as well as in the homologous recombination repair (HRR) genes. A total of 50 mCRPC cases were analyzed using a multi-gene next-generation sequencing panel evaluating a total of 1360 amplicons in 24 HRR genes. Of the 50 cases, 23 specimens (46.0%) had an mCRPC harboring a pathogenic variant or a variant of uncertain significance (VUS), whereas in 27 mCRPCs (54.0%), no mutations were detected (wild-type tumors). BRCA2 was the most commonly mutated gene (14.0% of samples), followed by ATM (12.0%), and BRCA1 (6.0%). In conclusion, we have set up an NGS multi-gene panel that is capable of analyzing BRCA1/BRCA2 and HRR alterations in mCRPC. Moreover, our clinical algorithm is currently being used in clinical practice for the management of patients with mCRPC

    Integrated clinicopathologic and molecular analysis of endometrial carcinoma: Prognostic impact of the new ESGO-ESTRO-ESP endometrial cancer risk classification and proposal of histopathologic algorithm for its implementation in clinical practice

    Get PDF
    IntroductionThe European Society of Gynecologic Oncology/European Society of Radiation Therapy and Oncology/European Society of Pathology (ESGO/ESTRO/ESP) committee recently proposed a new risk stratification system for endometrial carcinoma (EC) patients that incorporates clinicopathologic and molecular features. The aim of the study is to compare the new ESGO/ESTRO/ESP risk classification system with the previous 2016 recommendations, evaluating the impact of molecular classification and defining a new algorithm for selecting cases for molecular analysis to assign the appropriate risk class.MethodsThe cohort included 211 consecutive EC patients. Immunohistochemistry and next-generation sequencing were used to assign molecular subgroups of EC: POLE mutant (POLE), mismatch repair deficient (MMRd), p53 mutant (p53abn), and no specific molecular profile (NSMP).ResultsImmuno-molecular analysis was successful in all cases, identifying the four molecular subgroups: 7.6% POLE, 32.2% MMRd, 20.9% p53abn, and 39.3% NSMP. The recent 2020 guidelines showed a 32.7% risk group change compared with the previous 2016 classification system: the reassignment is due to POLE mutations, abnormal p53 expression, and a better definition of lymphovascular space invasion. The 2020 system assigns more patients to lower-risk groups (42.2%) than the 2016 recommendation (25.6%). Considering the 2020 risk classification system that includes the difference between “unknown molecular classification” and “known,” the integration of molecular subgroups allowed 6.6% of patients to be recategorized into a different risk class. In addition, the use of the proposed algorithm based on histopathologic parameters would have resulted in a 62.6% reduction in molecular analysis, compared to applying molecular classification to all patients.ConclusionApplication of the new 2020 risk classification integrating clinicopathologic and molecular parameters provided more accurate identification of low-and high-risk patients, potentially allowing a more specific selection of patients for post-operative adjuvant therapy. The proposed histopathologic algorithm significantly decreases the number of tests needed and could be a promising tool for cost reduction without compromising prognostic stratification

    Molecular Diagnostic of Solid Tumor Using a Next Generation Sequencing Custom-Designed Multi-Gene Panel

    No full text
    Next generation sequencing (NGS) allows parallel sequencing of multiple genes at a very high depth of coverage. The need to analyze a variety of targets for diagnostic/prognostic/predictive purposes requires multi-gene characterization. Multi-gene panels are becoming standard approaches for the molecular analysis of solid lesions. We report a custom-designed 128 multi-gene panel engineered to cover the relevant targets in 22 oncogene/oncosuppressor genes for the analysis of the solid tumors most frequently subjected to routine genotyping. A total of 1695 solid tumors were analyzed for panel validation. The analytical sensitivity is 5%. Analytical validation: (i) Accuracy: sequencing results obtained using the multi-gene panel are concordant using two different NGS platforms and single-gene approach sequencing (100% of 83 cases); (ii) Precision: consistent results are obtained in the samples analyzed twice with the same platform (100% of 20 cases). Clinical validation: the frequency of mutations identified in different tumor types is consistent with the published literature. This custom-designed multi-gene panel allows to analyze with high sensitivity and throughput 22 oncogenes/oncosuppressor genes involved in diagnostic/prognostic/predictive characterization of central nervous system tumors, non-small-cell lung carcinomas, colorectal carcinomas, thyroid nodules, pancreatic lesions, melanoma, oral squamous carcinomas and gastrointestinal stromal tumors

    Role of Hog1 and Yaf9 in the transcriptional response of Saccharomyces cerevisiae to cesium chloride

    No full text
    We analyzed the global transcriptional response of Saccharomyces cerevisiae cells exposed to different concentrations of CsCl in the growth medium and at different times after addition. Early responsive genes were mainly involved in cell wall structure and biosynthesis. About half of the induced genes were previously shown to respond to other alkali metal cations in a Hog1-dependent fashion. Western blot analysis confirmed that cesium concentrations as low as 100 mM activate Hog1 phosphorylation. Another important fraction of the cesium-modulated genes requires Yaf9p for full responsiveness as shown by the transcriptome of a yaf9-deleted strain in the presence of cesium. We showed that a cell wall-restructuring process promptly occurs in response to cesium addition, which is dependent on the presence of both Hog1 and Yaf9 proteins. Moreover, the sensitivity to low concentration of cesium of the yaf9-deleted strain is not observed in a strain carrying the hog1/yaf9 double deletion. We conclude that the observed early transcriptional modulation of cell wall genes has a crucial role in S. cerevisiae adaptation to cesium

    Different Methods in HPV Genotyping of Anogenital and Oropharyngeal Lesions: Comparison between VisionArray® Technology, Next Generation Sequencing, and Hybrid Capture Assay

    No full text
    (1) Background: Human papillomaviruses (HPVs) are known to be related to the development of about 5% of all human cancers. The clinical relevance of HPV infection has been deeply investigated in carcinomas of the oropharyngeal area, uterine cervix, and anogenital area. To date, several different methods have been used for detecting HPV infection. The aim of the present study was to compare three different methods for the diagnosis of the presence of the HPV genome. (2) Methods: A total of 50 samples were analyzed. Twenty-five of them were tested using both next generation sequencing (NGS) and VisionArray® technology, the other 25 were tested using Hybrid Capture (HC) II assay and VisionArray® technology. (3) Results: A substantial agreement was obtained using NGS and VisionArray® (κ = 0.802), as well as between HC II and VisionArray® (κ = 0.606). In both analyses, the concordance increased if only high risk HPVs I(HR-HPVs) were considered as “positive”. (4) Conclusions: Our data highlighted the importance of technical choice in HPV characterization, which should be guided by the clinical aims, costs, starting material, and turnaround time for results

    Expanding the Spectrum of <i>BRAF</i> Non-V600E Mutations in Thyroid Nodules: Evidence-Based Data from a Tertiary Referral Centre

    Get PDF
    The BRAF p.V600E mutation represents the most specific marker for papillary thyroid carcinoma and is potentially related to aggressive behavior and persistent disease. BRAF alterations other than the p.V600E are less common in thyroid carcinoma and represent an alternative mechanism of BRAF activation with unclear clinical significance. The study aims to describe the frequency and clinicopathologic characteristics of BRAF non-V600E mutations in a large cohort (1654 samples) of thyroid lesions characterized by next-generation sequencing. BRAF mutations have been found in 20.3% (337/1654) of thyroid nodules, including classic (p.V600E) mutation in 19.2% (317/1654) of samples and non-V600E variants in 1.1% of cases (19/1654). BRAF non-V600E alterations include 5 cases harboring p.K601E, 2 harboring p.V600K substitutions, 2 with a p.K601G variant, and 10 cases with other BRAF non-V600E alterations. BRAF non-V600E mutations have been reported in one case of follicular adenoma, three cases of conventional papillary thyroid carcinoma, eight cases of follicular variant of papillary carcinomas, one case of columnar cell variant papillary thyroid carcinoma, one case of oncocytic follicular carcinoma, and two bone metastasis of follicular thyroid carcinoma. We confirm that BRAF non-V600E mutations are uncommon and typically found in indolent follicular-patterned tumors. Indeed, we show that BRAF non-V600E mutations can be found in tumors with metastatic potential. However, in both aggressive cases, the BRAF mutations were concomitant with other molecular alterations, such as TERT promoter mutation

    Relevance of <i>ARID1A</i> Mutations in Endometrial Carcinomas

    No full text
    Since the Cancer Genome Atlas (TCGA) project identified four distinct groups based on molecular alterations, mutation analyses have been integrated into the characterization of endometrial carcinomas (ECs). ARID1A seems to be the subunit more involved in the loss of function of the SWI/SNF complex in ECs. The aim of this study is to define the relevance of ARID1A alterations in a cohort of EC, studying the possible associations between DNA mutation (genomic level), RNA expression (transcriptomic level), and protein expression (proteomic level). A total of 50 endometrial carcinomas were characterized for ARID1A mutations (using targeted DNA next-generation sequencing—NGS), ARID1A gene expression (using RNAseq and qRT-PCR), and ARID1A protein expression (using immunohistochemistry—IHC). Moreover, we have investigated if ARID1A mutations may alter the protein structure, using the Protein Data Bank sequence. We found a good correlation between ARID1A mutations and protein immunostaining, even if we did not find statistically significant differences in the ARID1A expression levels. In conclusion, our data demonstrated that the molecular characterization of ARID1A should be associated with IHC analysis, mainly in those cases harboring “novel” ARID1A mutations or in those alterations with “uncertain” pathogenic significance
    corecore