6 research outputs found

    Muscle MRI in periodic paralysis shows myopathy is common and correlates with intramuscular fat accumulation

    Get PDF
    INTRODUCTION/AIMS: The periodic paralyses are muscle channelopathies: hypokalemic periodic paralysis (CACNA1S and SCN4A variants), hyperkalemic periodic paralysis (SCN4A variants), and Andersen-Tawil syndrome (KCNJ2). Both episodic weakness and disabling fixed weakness can occur. Little literature exists on magnetic resonance imaging (MRI) in muscle channelopathies. We undertake muscle MRI across all subsets of periodic paralysis and correlate with clinical features. METHODS: A total of 45 participants and eight healthy controls were enrolled and underwent T1-weighted and short-tau-inversion-recovery (STIR) MRI imaging of leg muscles. Muscles were scored using the modified Mercuri Scale. RESULTS: A total of 17 patients had CACNA1S variants, 16 SCN4A, and 12 KCNJ2. Thirty-one (69%) had weakness, and 9 (20%) required a gait-aid/wheelchair. A total of 78% of patients had intramuscular fat accumulation on MRI. Patients with SCN4A variants were most severely affected. In SCN4A, the anterior thigh and posterior calf were more affected, in contrast to the posterior thigh and posterior calf in KCNJ2. We identified a pattern of peri-tendinous STIR hyperintensity in nine patients. There were moderate correlations between Mercuri, STIR scores, and age. Intramuscular fat accumulation was seen in seven patients with no fixed weakness. DISCUSSION: We demonstrate a significant burden of disease in patients with periodic paralyses. MRI intramuscular fat accumulation may be helpful in detecting early muscle involvement, particularly in those without fixed weakness. Longitudinal studies are needed to assess the role of muscle MRI in quantifying disease progression over time and as a potential biomarker in clinical trials

    COVID‐19 infection and vaccination in patients with Skeletal Muscle Channelopathies

    No full text
    INTRODUCTION/AIMS: Although we have gained insight into coronavirus disease‐2019 (COVID‐19) caused by severe acute respiratory syndrome–coronavirus 2 since the beginning of the pandemic, our understanding of the consequences for patients with neuromuscular disorders is evolving. In this study we aimed to study the impact of COVID‐19 and COVID‐19 vaccination on skeletal muscle channelopathies. METHODS: We conducted a survey of patients with genetically confirmed skeletal muscle channelopathies seen at the UK Nationally Commissioned Channelopathy Service. RESULTS: Thirty‐eight patient responses were received. Six patients had COVID‐19 infection leading to exacerbation of their underlying muscle channelopathy. No major complications were reported. Thirty‐six patients had received one or two COVID‐19 vaccinations and the majority (68%) had no worsening of their underlying channelopathy. Thirty‐two percent reported worsening of their usual symptoms of their muscle channelopathy, but all reported recovery to baseline levels. No serious adverse events were reported. DISCUSSION: The overall rates of COVID‐19 infection were low in our study and COVID‐19 vaccine uptake rates were high. Our results have been useful to inform patients that a subset of patients have reversible worsening of their channelopathy post–COVID‐19 vaccination. Our study provides information for giving advice to patients with skeletal muscle channelopathies regarding COVID‐19 infection and vaccination

    Prevalence of genetically confirmed skeletal muscle channelopathies in the era of next generation sequencing

    No full text
    We provide an up-to-date and accurate minimum point prevalence of genetically defined skeletal muscle channelopathies which is important for understanding the population impact, planning for treatment needs and future clinical trials. Skeletal muscle channelopathies include myotonia congenita (MC), sodium channel myotonia (SCM), paramyotonia congenita (PMC), hyperkalemic periodic paralysis (hyperPP), hypokalemic periodic paralysis (hypoPP) and Andersen- Tawil Syndrome (ATS). Patients referred to the UK national referral centre for skeletal muscle channelopathies and living in UK were included to calculate the minimum point prevalence using the latest data from the Office for National Statistics population estimate. We calculated a minimum point prevalence of all skeletal muscle channelopathies of 1.99/100 000 (95% CI 1.981-1.999). The minimum point prevalence of MC due to CLCN1 variants is 1.13/100 000 (95% CI 1.123-1.137), SCN4A variants which encode for PMC and SCM is 0.35/100 000 (95% CI 0.346 - 0.354) and for periodic paralysis (HyperPP and HypoPP) 0.41/100 000 (95% CI 0.406-0.414). The minimum point prevalence for ATS is 0.1/100 000 (95% CI 0.098-0.102). There has been an overall increase in point prevalence in skeletal muscle channelopathies compared to previous reports, with the biggest increase found to be in MC. This can be attributed to next generation sequencing and advances in clinical, electrophysiological and genetic characterisation of skeletal muscle channelopathies

    Antiphospholipid antibodies and neurological manifestations in acute COVID-19: A single-centre cross-sectional study

    No full text
    Background: A high prevalence of antiphospholipid antibodies has been reported in case series of patients with neurological manifestations and COVID-19; however, the pathogenicity of antiphospholipid antibodies in COVID-19 neurology remains unclear. Methods: This single-centre cross-sectional study included 106 adult patients: 30 hospitalised COVID-neurological cases, 47 non-neurological COVID-hospitalised controls, and 29 COVID-non-hospitalised controls, recruited between March and July 2020. We evaluated nine antiphospholipid antibodies: anticardiolipin antibodies [aCL] IgA, IgM, IgG; anti-beta-2 glycoprotein-1 [aβ2GPI] IgA, IgM, IgG; anti-phosphatidylserine/prothrombin [aPS/PT] IgM, IgG; and anti-domain I β2GPI (aD1β2GPI) IgG. Findings: There was a high prevalence of antiphospholipid antibodies in the COVID-neurological (73.3%) and non-neurological COVID-hospitalised controls (76.6%) in contrast to the COVID-non-hospitalised controls (48.2%). aPS/PT IgG titres were significantly higher in the COVID-neurological group compared to both control groups (p < 0.001). Moderate-high titre of aPS/PT IgG was found in 2 out of 3 (67%) patients with acute disseminated encephalomyelitis [ADEM]. aPS/PT IgG titres negatively correlated with oxygen requirement (FiO2 R=-0.15 p = 0.040) and was associated with venous thromboembolism (p = 0.043). In contrast, aCL IgA (p < 0.001) and IgG (p < 0.001) was associated with non-neurological COVID-hospitalised controls compared to the other groups and correlated positively with d-dimer and creatinine but negatively with FiO2. Interpretation: Our findings show that aPS/PT IgG is associated with COVID-19-associated ADEM. In contrast, aCL IgA and IgG are seen much more frequently in non-neurological hospitalised patients with COVID-19. Characterisation of antiphospholipid antibody persistence and potential longitudinal clinical impact are required to guide appropriate management. Funding: This work is supported by UCL Queen Square Biomedical Research Centre (BRC) and Moorfields BRC grants (#560441 and #557595). LB is supported by a Wellcome Trust Fellowship (222102/Z/20/Z). RWP is supported by an Alzheimer's Association Clinician Scientist Fellowship (AACSF-20-685780) and the UK Dementia Research Institute. KB is supported by the Swedish Research Council (#2017-00915) and the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986). HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712), Swedish State Support for Clinical Research (#ALFGBG-720931), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), and theUK Dementia Research Institute at UCL. BDM is supported by grants from the MRC/UKRI (MR/V007181/1), MRC (MR/T028750/1) and Wellcome (ISSF201902/3). MSZ, MH and RS are supported by the UCL/UCLH NIHR Biomedical Research Centre and MSZ is supported by Queen Square National Brain Appeal
    corecore