96 research outputs found

    Kinetic influence of siliceous reactions on structure formation of mesoporous silica formed via the co-structure directing agent route

    Get PDF
    We investigate the mechanism responsible for the formation of mesoporous silica formed with the so-called costructure directing agent (CSDA) route. The synthesis relies on the interaction between silica source (tetraethylorthosilicate), cationic surfactant (C18H37N+(CH3)2(CH2)3N+(CH3)3Br2), and CSDA (carboxyethylsilanetriol), which results in a material functionalized with carboxylic groups. Depending on the concentration of HCl in the synthesis, the structure is defined by Fm3¯m (at high pH) and by Fd3¯m (at low pH), with a gradual transition in the intermediate pH range. Here, we aim at finding the origin for the structural change triggered by pH and investigate the effects of the hydrolysis of the silica source on the overall kinetics of the synthesis. A fast process results in Fm3¯m, regardless of pH, and a slow process results in Fd3¯m. The hydrolysis step is the important structural control parameter. We studied the cross-linking of silica and CSDA using 29Si NMR. The cross-linking is similar for the two structures, and possibly the Fd3¯m structure contains slightly more CSDA. 13C PT ssNMR was used to investigate the surfactant mobility/rigidity during the synthesis. The rigidity of the Fm3¯m is established much faster than that of the Fd3¯m

    Cryo-TEM studies of DNA and DNA-lipid structures

    No full text
    Studies published between 2001 and 2005 that utilise cryogenic transmission electron microscopy as a tool for investigating solutions containing DNA with or without amphiphiles present are reviewed. DNA or oligonucleotides form complexes with amphiphilic molecules such as lipids, so-called lipoplexes, and the structures and morphologies are excellent objects to study by cryogenic transmission electron microscopy. Recent studies show that this technique is in effective tool for identification of a range of structures such as unilamellar or multilamellar vesicles or dispersed liquid crystalline phases. (c) 2005 Elsevier Ltd. All rights reserved

    Assessment of Porosities of SBA-15 and MCM-41 Using Water Sorption Calorimetry

    No full text
    Water sorption calorimetry has been used for characterization of 2D hexagonally ordered mesoporous silica SBA-15. Experimental data on water sorption isotherm, the enthalpy, and the entropy of hydration of SBA-15 are presented. The results were compared with previously published results on MCM-41 obtained using the same technique. The water sorption isotherm of SBA-15 consists of four regimes, while the sorption isotherm of MCM-41 consists only of three. The extra regime in the water sorption isotherm for SBA-15 arises from filling of intrawall pores, that are present in SBA-15 but absent in MCM-41. The water sorption isotherms of the two types of mesoporous silica were analyzed using the Barrett−Joyner−Halenda approach. For the BJH analysis, t-curves of silica with different degrees of hydroxylation were proposed. Comparison of water and nitrogen t-curves shows that, independent of hydroxylation of silica surface, the adsorbed film of water is much thinner than the adsorbed film of nitrogen at similar relative pressures. This fact decreases the uncertainty of the assessment of porosity with water sorption originated from variations in surface properties. The pore size distribution of SBA-15 calculated with BJH treatment of water sorption data is in good agreement with nitrogen NLDFT results on the same material

    The Dynamic Association Processes Leading from a Silica Precursor to a Mesoporous SBA-15 Material.

    No full text
    During the last two decades, the synthesis of silica with an ordered mesoporous structure has been thoroughly explored. The basis of the synthesis is to let silica monomers polymerize in the presence of an amphiphilic template component. In the first studies, cationic surfactants were used as structure inducer. Later it was shown that pluronic copolymers also could have the role. One advantage with the pluronics copolymers is that they allow for a wider variation in the radius of pores in the resulting silica material. Another advantage lies in the higher stability resulting from the thicker walls between the pores. Mesoporous silica has a very high area to volume ratio, and the ordered structure ensures surface homogeneity. There are a number of applications of this type of material. It can be used as support for catalysts, as templates to produces other mesoporous inorganic materials, or in controlled release applications. The synthesis of mesoporous silica is, from a practical point of view, simple, but there are significant possibilities to vary synthesis conditions with a concomitant effect on the properties of the resulting material. It is clear that the structural properties on the nanometer scale are determined by the self-assembly properties of the amphiphile, and this knowledge has been used to optimize pore geometry and pore size. To have a practical functional material it is desirable to also control the structure on a micrometer scale and larger. In practice, one has largely taken an empirical approach in optimizing reaction conditions, paying less attention to underlying chemical and physicochemical mechanisms that lead from starting conditions to the final product. In this Account, we present our systematic studies of the processes involved not only in the formation of the mesoporous structure as such, but also of the formation of structures on the micrometer scale. The main point is to show how the ongoing silica polymerization triggers a sequence of structural changes through the action of colloidal interactions. Our approach is to use a multitude of experimental methods to characterize the time evolution of the same highly reproducible synthesis process. It is the silica polymerization reactions that set the time scale, and the block copolymer self-assembly responds to the progress of the polymerization through a basically hydrophobic interaction between silica and ethylene oxide units. The progression of the silica polymerization leads to an increased hydrophobicity triggering an aggregation process resulting in the formation of silica-copolymer composite particles of increasing size. The particle growth occurs in a stepwise way caused by intricate shifts between colloidal stability and instability. By tuning reaction conditions one can have an end product of hexagonal prism composite particles with single crystal 2D hexagonal order

    The use of in situ and ex situ techniques for the study of the formation mechanism of mesoporous silica formed with non-ionic triblock copolymers.

    No full text
    Since the discovery of the mesoporous silica material templated by ionic surfactants and the subsequent development of materials templated by non-ionic surfactants and polymers, for example SBA-15, there has been a continuous research effort towards understanding their formation. In situ methodologies, such as Small Angle X-ray Scattering (SAXS), Small Angle Neutron Scattering (SANS), spectroscopic techniques like NMR and EPR, and ex situ methodologies such as electron microscopy techniques (SEM, TEM and cryo-TEM) are powerful and important tools in the investigation of the mechanism by which these materials form. The need for a fundamental understanding of the systems is of academic concern and of great importance when developing materials for applications. In this tutorial review we aim to give the reader a comprehensive overview on the development of the field over the years and an introduction to the experimental in situ and ex situ techniques that have been used

    Hydration of MCM-41 studied by sorption calorimetry

    No full text
    Hydration of mesoporous silica MCM-41 was studied using the method of sorption calorimetry. By combining water sorption and nitrogen sorption experiments, we calculated the density of silanol groups on the MCM41 surface as 1.6 nm(-2). Comparison of capillary condensation regimes of water and nitrogen showed that the apparent density of water confined in MCM-41 pores is ca. 0.88 g/cm(3). The pore diameter calculated using a combination of X-ray and sorption data is 39 A. Calculations based on application of the Kelvin-Cohan equation on the water sorption data are in reasonable agreement with this value. The sorption calorimetric results show that the capillary condensation of water in the pores is driven by enthalpy; the entropic effect is negative. A mechanism of hydration that involves formation of small unfilled cavities adjacent to pore walls can be used to explain the observed enthalpy end entropy effects. Comparison of sorption and desorption data indicates the presence of air trapped in pores when hydration is performed by mixing MCM-41 with liquid water. The heat effect of pre-capillary condensation adsorption of water on hydroxylated MCM-41 is much more exothermic compared to the original calcined material

    Growth and morphology of mesoporous SBA-15 particles

    No full text

    Influence of the block length of triblock copolymers on th formation of mesoporous silica

    No full text
    The effect of different block lengths of Pluronic surfactants, (EO)(x)-(PO)(y)-(EO)(x), in the formation of mesoporous silica has been investigated. The syntheses were performed in micellar solution of the surfactant under acidic conditions. The materials were characterized by SAXS, TEM and nitrogen adsorption measurements. The EO-block length of the polymers determines the mesostructure of the silica. For the hexagonal material (SBA-15) the wall thickness is largely dependent on the length of the EO-blocks, while the PO-block length has a great effect on the pore diameter. Furthermore, the PO-block length influences the templating ability, as longer PO-blocks result in more highly ordered domai s and well defined particles. The synthesis temperature also influences these parameters. (C) 2003 Elsevier Science Inc. All rights reserved
    • …
    corecore