116 research outputs found

    Networks of plants: How to measure similarity in vegetable species

    Get PDF
    Despite the common misconception of nearly static organisms, plants do interact continuously with the environment and with each other. It is fair to assume that during their evolution they developed particular features to overcome similar problems and to exploit possibilities from environment. In this paper we introduce various quantitative measures based on recent advancements in complex network theory that allow to measure the effective similarities of various species. By using this approach on the similarity in fruit-Typology ecological traits we obtain a clear plant classification in a way similar to traditional taxonomic classification. This result is not trivial, since a similar analysis done on the basis of diaspore morphological properties do not provide any clear parameter to classify plants species. Complex network theory can then be used in order to determine which feature amongst many can be used to distinguish scope and possibly evolution of plants. Future uses of this approach range from functional classification to quantitative determination of plant communities in nature

    The network of plants volatile organic compounds

    Get PDF

    The network of plants volatile organic compounds

    Get PDF
    Plants emission of Volatile Organic Compounds (VOCs) is involved in a wide class of ecological functions, as VOCs play a crucial role in plants interactions with biotic and abiotic factors. Accordingly, they vary widely across species and underpin differences in ecological strategy. In this paper, VOCs spontaneously emitted by 109 plant species (belonging to 56 different families) have been qualitatively and quantitatively analysed in order to provide an alternative classification of plants species. In particular, by using bipartite networks methodology from Complex Network Theory, and through the application of community detection algorithms, we show that is possible to classify species according to chemical classes such as terpenes and sulfur compounds. Such complex network analysis allows to uncover hidden plants relationships related to their evolutionary and adaptation to the environment story

    Distress propagation in complex networks: The case of non-linear DebtRank

    Get PDF
    We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes that losses are propagated linearly between connected banks. Here we relax this assumption and introduce a one-parameter family of non-linear propagation functions. As a case study, we apply this algorithm to a data-set of 183 European banks, and we study how the stability of the system depends on the non-linearity parameter under different stress-test scenarios. We find that the system is characterized by a transition between a regime where small shocks can be amplified and a regime where shocks do not propagate, and that the overall stability of the system increases between 2008 and 2013

    A high-resolution δ18O record and Mediterranean climate variability

    Get PDF
    A high-resolution, well-dated foraminiferal δ<sup>18</sup>O record from a shallow-water core drilled from the Gallipoli Terrace in the Gulf of Taranto (Ionian Sea), previously measured over the last two millennia, has been extended to cover 707 BC–AD 1979. Spectral analysis of this series, performed using singular-spectrum analysis (SSA) and other classical and advanced methods, strengthens the results obtained analysing the shorter δ<sup>18</sup>O profile, detecting the same highly significant oscillations of about 600, 380, 170, 130 and 11 years, respectively explaining about 12, 7, 5, 2 and 2% of the time series total variance, plus a millennial trend (18% of the variance). The comparison with the results of multi-channel singular-spectrum analysis (MSSA) applied to a data set of 26 Northern Hemisphere (NH) temperature-proxy records shows that NH temperature anomalies share with our local record a~long-term trend and a bicentennial (170-year period) cycle. These two variability modes, previously identified as temperature-driven, are the most powerful modes in the NH temperature data set. Both the long-term trends and the bicentennial oscillations, when reconstructed locally and hemispherically, show coherent phases. Furthermore, the corresponding local and hemispheric amplitudes are comparable if changes in the precipitation–evaporation balance of the Ionian sea, presumably associated with temperature changes, are taken into account

    Temperature and precipitation in Northeast China during the last 150 years: relationship to large-scale climatic variability

    Get PDF
    The analysis of two historical time series of temperature and precipitation in Northeast China, spanning, respectively, 1870–2004 and 1841–2004, performed by continuous wavelet transform and other classical and advanced spectral methods, is presented here. Both variables show a particular trend and oscillations of about 85, 60, 35 and 20 years that are highly significant, with a phase opposition at the centennial scale and at the 20-year scale. The analysis of the four temperature series relative to single seasons shows that the 20-year cycle is typical of the summer monsoon season, while the 35-year cycle is most evident in winter. The cycles of ~ 60 years and longer are present in all seasons. The centennial variation of temperature and precipitation describes well the 1970–1980 transition between a period of relatively strong East Asian Summer Monsoon (EASM), corresponding to high precipitation and relatively cool temperatures in Northeast China, and a conditions of weak EASM (low precipitation and warm temperatures). The connection of the detected local variations with large-scale climatic variability is deduced from the comparison with different climatic records (Northern Hemisphere temperature, Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation indexes)

    Extended DFT+U+V method with on-site and inter-site electronic interactions

    Full text link
    In this article we introduce a generalization of the popular DFT+U method based on the extended Hubbard model that includes on-site and inter-site electronic interactions. The novel corrective Hamiltonian is designed to study systems for which electrons are not completely localized on atomic states (according to the general scheme of Mott localization) and hybridization between orbitals from different sites plays an important role. The application of the extended functional to archetypal Mott - charge-transfer (NiO) and covalently bonded insulators (Si and GaAs) demonstrates its accuracy and versatility and the possibility to obtain a unifying and equally accurate description for a broad range of very diverse systems

    Aquifer recharge in the Piedmont Alpine zone: Historical trends and future scenarios

    Get PDF
    The spatial and temporal variability of air temperature, precipitation, actual evapotranspiration (AET) and their related water balance components, as well as their responses to anthropogenic climate change, provide fundamental information for an effective management of water resources and for a proactive involvement of users and stakeholders, in order to develop and apply adaptation and mitigation strategies at the local level. In this study, using an interdisciplinary research approach tailored to water management needs, we evaluate the past, present and future quantity of water potentially available for drinking supply in the water catchments feeding the about 2.3 million inhabitants of the Turin metropolitan area (the former Province of Turin, north-western Italy), considering climatologies at the quarterly and yearly timescales. Observed daily maximum surface air temperature and precipitation data from 1959 to 2017 were analysed to assess historical trends, their significance and the possible cross-correlations between the water balance components. Regional climate model (RCM) simulations from a small ensemble were analysed to provide mid-century projections of the difference between precipitation and AET for the area of interest in the future CMIP5 scenarios RCP4.5 (stabilization) and RCP8.5 (business as usual). Temporal and spatial variations in recharge were approximated with variations of drainage. The impact of irrigation, and of snowpack variability, on the latter was also assessed. The other terms of water balance were disregarded because they are affected by higher uncertainty. The analysis over the historical period indicated that the driest area of the study region displayed significant negative annual (and spring) trends of both precipitation and drainage. Results from field experiments were used to model irrigation, and we found that relatively wetter watersheds in the northern and in the southern parts behave differently, with a significant increase of AET due to irrigation. The analysis of future projections suggested almost stationary conditions for annual data. Regarding quarterly data, a slight decrease in summer drainage was found in three out of five models in both emission scenarios. The RCM ensemble exhibits a large spread in the representation of the future drainage trends. The large interannual variability of precipitation was also quantified and identified as a relevant risk factor for water management, expected to play a major role also in future decades
    • …
    corecore