39 research outputs found

    Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SA-alpha-2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources.</p> <p>Methods</p> <p>This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins <it>Maackia Amurensis </it>(MAA) I, and II, and <it>Sambucus Nigra </it>(SNA). Furthermore, the predilection sites of swine influenza virus (SIV) subtypes H1N1 and H1N2 as well as avian influenza virus (AIV) subtype H4N6 were investigated in the respiratory tract of experimentally infected pigs using immunohistochemical methods.</p> <p>Results</p> <p>SIV antigen was widely distributed in bronchi, but was also present in epithelial cells of the nose, trachea, bronchioles, and alveolar type I and II epithelial cells in severely affected animals. AIV was found in the lower respiratory tract, especially in alveolar type II epithelial cells and occasionally in bronchiolar epithelial cells. SA-alpha-2,6 was the predominant receptor in all areas of the respiratory tract with an average of 80-100% lining at the epithelial cells. On the contrary, the SA-alpha-2,3 was not present (0%) at epithelial cells of nose, trachea, and most bronchi, but was found in small amounts in bronchioles, and in alveoli reaching an average of 20-40% at the epithelial cells. Interestingly, the receptor expression of both SA-alpha-2,3 and 2,6 was markedly diminished in influenza infected areas compared to non-infected areas.</p> <p>Conclusions</p> <p>A difference in predilection sites between SIV and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated that the distribution of influenza A virus receptors in pigs are similar to that of humans and therefore challenge the theory that the pig acts as a mixing vessel between human and avian influenza viruses. Furthermore, it was shown that AIV prefers to infect alveolar type II epithelial cells in pigs. This corresponds with findings in humans emphasising the resemblance between the two species.</p

    Sub-Nucleocapsid Nanoparticles: A Nasal Vaccine against Respiratory Syncytial Virus

    Get PDF
    Background: Bronchiolitis caused by the respiratory syncytial virus (RSV) in infants less than two years old is a growing public health concern worldwide, and there is currently no safe and effective vaccine. A major component of RSV nucleocapsid, the nucleoprotein (N), has been so far poorly explored as a potential vaccine antigen, even though it is a target of protective anti-viral T cell responses and is remarkably conserved between human RSV A and B serotypes. We recently reported a method to produce recombinant N assembling in homogenous rings composed of 10–11 N subunits enclosing a bacterial RNA. These nanoparticles were named sub-nucleocapsid ring structure (N SRS). Methodology and Principal Findings: The vaccine potential of N SRS was evaluated in a well-characterized and widely acknowledged mouse model of RSV infection. BALB/c adult mice were immunized intranasally with N SRS adjuvanted with the detoxified E. coli enterotoxin LT(R192G). Upon RSV challenge, vaccinated mice were largely protected against virus replication in the lungs, with a mild inflammatory lymphocytic and neutrophilic reaction in their airways. Mucosal immunization with N SRS elicited strong local and systemic immunity characterized by high titers of IgG1, IgG2a and IgA anti-N antibodies, antigen-specific CD8+ T cells and IFN-c-producing CD4+ T cells. Conclusions/Significance: This is the first report of using nanoparticles formed by the recombinant nucleocapsid protein as an efficient and safe intra-nasal vaccine against RSV

    Promising System for Selecting Healthy In Vitro–Fertilized Embryos in Cattle

    Get PDF
    Conventionally, in vitro–fertilized (IVF) bovine embryos are morphologically evaluated at the time of embryo transfer to select those that are likely to establish a pregnancy. This method is, however, subjective and results in unreliable selection. Here we describe a novel selection system for IVF bovine blastocysts for transfer that traces the development of individual embryos with time-lapse cinematography in our developed microwell culture dish and analyzes embryonic metabolism. The system can noninvasively identify prognostic factors that reflect not only blastocyst qualities detected with histological, cytogenetic, and molecular analysis but also viability after transfer. By assessing a combination of identified prognostic factors—(i) timing of the first cleavage; (ii) number of blastomeres at the end of the first cleavage; (iii) presence or absence of multiple fragments at the end of the first cleavage; (iv) number of blastomeres at the onset of lag-phase, which results in temporary developmental arrest during the fourth or fifth cell cycle; and (v) oxygen consumption at the blastocyst stage—pregnancy success could be accurately predicted (78.9%). The conventional method or individual prognostic factors could not accurately predict pregnancy. No newborn calves showed neonatal overgrowth or death. Our results demonstrate that these five predictors and our system could provide objective and reliable selection of healthy IVF bovine embryos

    Measurement of the viscoelastic properties of blood plasma clot formation in response to tissue factor concentration-dependent activation

    Get PDF
    © 2016, The Author(s). The coagulation of blood plasma in response to activation with a range of tissue factor (TF) concentrations was studied with a quartz crystal microbalance (QCM), where frequency and half width at half maximum (bandwidth) values measured from the conductance spectrum near resonant frequency were used. Continuous measurement of bandwidth along with the frequency allows for an understanding of the dissipative nature of the forming viscoelastic clot, thus providing information on the complex kinetics of the viscoelastic changes occurring during the clot formation process. Using a mathematical model, these changes in frequency and bandwidth have been used to derive novel QCM parameters of effective elasticity, effective mass density and rigidity factor of the viscoelastic layer. The responses of QCM were compared with those from thromboelastography (TEG) under identical conditions. It was demonstrated that the nature of the clot formed, as determined from the QCM parameters, was highly dependent on the rate of clot formation resulting from the TF concentration used for activation. These parameters could also be related to physical clot characteristics such as fibrin fibre diameter and fibre density, as determined by scanning electron microscopic image analysis. The maximum amplitude (MA) as measured by TEG, which purports to relate to clot strength, was unable to detect these differences

    Comparison of promoter activity in Aleutian mink disease parvovirus, minute virus of mice, and canine parvovirus: possible role of weak promoters in the pathogenesis of Aleutian mink disease parvovirus infection.

    No full text
    Aleutian mink disease parvovirus (ADV) infection causes both acute and chronic disease in mink, and we have previously shown that it is the level of viral gene expression that determines the disease pattern. To study the gene regulation of ADV, we have cloned the P3 ADV and P36 ADV promoters in front of a reporter gene, the chloramphenicol acetyltransferase (CAT) gene, and analyzed these constructs by transient transfection in a feline kidney cell line and mouse NIH 3T3 cells. The genes for ADV structural proteins (VP1 and VP2) and the nonstructural proteins (NS-1, NS-2, and NS-3) were cloned into a eukaryotic expression vector, and their functions in regulation of the P3 ADV and P36 ADV promoters were examined in cotransfection experiments. The ADV NS-1 protein was able to transactivate the P36 ADV promoter and, to a lesser degree, the P3 ADV promoter. Constitutive activities of the P3 ADV and P36 ADV promoters were weaker than those of the corresponding promoters from the prototypic parvovirus minute virus of mice (MVM) and canine parvovirus (CPV). Also, the level of transactivation of the P36 ADV promoter was much lower than those of the corresponding P38 MVM and P38 CPV promoters transactivated with MVM NS-1. Moreover, the ADV NS-1 gene product could transactivate the P38 MVM promoter to higher levels than it could transactivate the P36 ADV promoter, while the P36 ADV promoter could be transactivated by MVM NS-1 and ADV NS-1 to similar levels. Taken together, these data indicated that cis-acting sequences in the P36 ADV promoter play a major role in determining the low level of transactivation observed. The P3 ADV and P4 MVM promoters could be transactivated to some degree by their respective NS-1 gene products. However, in contrast to the situation for the late promoters, switching NS-1 proteins between the two viruses was not possible. This finding may indicate a different mechanism of transactivation of the early promoters (P3 ADV and P4 MVM) compared with the late (P36 ADV and P38 MVM) promoters. In summary, the constitutive levels of expression from the ADV promoters are weaker than the levels from the corresponding promoters of MVM and CPV. Moreover, the level of NS-1-mediated transactivation of the late ADV promoter is impaired compared with the level of transactivation of the late promoters of MVM and CPV.(ABSTRACT TRUNCATED AT 400 WORDS
    corecore