1 research outputs found
A complex adaptive systems approach to the kinetic folding of RNA
The kinetic folding of RNA sequences into secondary structures is modeled as
a complex adaptive system, the components of which are possible RNA structural
rearrangements (SRs) and their associated bases and base pairs. RNA bases and
base pairs engage in local stacking interactions that determine the
probabilities (or fitnesses) of possible SRs. Meanwhile, selection operates at
the level of SRs; an autonomous stochastic process periodically (i.e., from one
time step to another) selects a subset of possible SRs for realization based on
the fitnesses of the SRs. Using examples based on selected natural and
synthetic RNAs, the model is shown to qualitatively reproduce characteristic
(nonlinear) RNA folding dynamics such as the attainment by RNAs of alternative
stable states. Possible applications of the model to the analysis of properties
of fitness landscapes, and of the RNA sequence to structure mapping are
discussed.Comment: 23 pages, 4 figures, 2 tables, to be published in BioSystems (Note:
updated 2 references