60 research outputs found

    Brief increases in corticosterone affect morphology, stress responses, and telomere length, but not post-fledging movements, in a wild songbird

    Full text link
    Organisms are frequently exposed to challenges during development, such as poor weather and food shortage. Such challenges can initiate the hormonal stress response, which involves secretion of glucocorticoids. Although the hormonal stress response helps organisms deal with challenges, long-term exposure to high levels of glucocorticoids can have morphological, behavioral, and physiological consequences, especially during development. Glucocorticoids are also associated with reduced survival and telomere shortening. To investigate whether brief, acute exposures to glucocorticoids can also produce these phenotypic effects in free-living birds, we exposed wild tree swallow (Tachycineta bicolor) nestlings to a brief exogenous dose of cort once per day for five days and then measured their morphology, baseline and stress-induced corticosterone levels, and telomere length. We also deployed radio tags on a subset of nestlings, which allowed us to determine the age at which tagged nestlings left the nest (fledged) and their pattern of presence and absence at the natal site during the post-breeding period. Corticosterone-treated nestlings had lower mass, higher baseline and stress-induced corticosterone, and reduced telomeres; other metrics of morphology were affected weakly or not at all. Our treatment resulted in no significant effect on survival to fledging, fledge age, or age at first departure from the natal site, and we found no negative effect of corticosterone on inter-annual return rate. These results show that brief acute corticosterone exposure during development can have measurable effects on phenotype in free-living tree swallows. Corticosterone may therefore mediate correlations between rearing environment and phenotype in developing organisms, even in the absence of prolonged stressors.Comment: 35 pages, 4 figures, 1 appendi

    Illuminating Endocrine Evolution: The Power and Potential of Large-Scale Comparative Analyses

    Get PDF
    Hormones are central mediators of genotype–phenotype and organism–environment interactions. Despite these important functions, the role of selection in shaping hormonal mediators of phenotype remains poorly understood. Thanks to decades of work by endocrinologists, circulating hormone levels have been measured in a diversity of organisms. Variation in other endocrine traits and mediators (e.g., receptor expression and binding globulins), and the hormonal response to standardized challenges (e.g., restraint, pharmacological challenges) are also increasingly measured in both captive and free-living populations. Large-scale comparative analyses of the multitude of available endocrine data represent a particularly promising approach to addressing the function and evolution of these key phenotypic mediators, and their potential to serve as indicators of disturbance. Several recent phylogenetic comparative analyses and meta-analyses have begun to reveal the power and potential of these approaches to address key questions in integrative biology. Here we highlight two recent developments that are facilitating such analyses: increasingly powerful and flexible phylogenetic comparative methods, and the release of two endocrine trait databases—HormoneBase (currently 474 species) and the Wildlife Endocrinology Information Network (currently 25 species)—that contain compiled measures of endocrine traits across vertebrates. Increasingly comprehensive comparative analyses of endocrine data could provide insight into many interesting questions, including how rapidly changing environments are impacting phenotypes, why endocrine traits differ so remarkably within and across populations, and the evolution of plasticity. The endocrine system mediates interactions between genotypes and phenotypes, and between organisms and their environment. Environmentally induced hormonal responses regulate phenotypic flexibility across timescales by altering physiological state, gene expression, and epigenetic marks. A staggering diversity of phenotypic traits are mediated by hormones from early development through senescence. Through their actions on behavior, hormones also exert widespread influence over how organisms interact with their biotic and abiotic environments. Because hormones are responsive to the environment, there has long been interest in their use as biomarkers of exposure to challenges. More recently, increasing attention has been paid to the potential for within and among-population variation in endocrine regulation or responsiveness to serve as indicators of resistance or resilience to future challenges, or measures of evolutionary potential

    Signal Traits and Oxidative Stress: A Comparative Study across Populations with Divergent Signals

    Get PDF
    Diverging populations often shift patterns of signal use – a process that can contribute to reproductive isolation and speciation. Yet it is not clear why most traits gain or lose signal value during divergence. One reason this could occur is because changes in the relationship between signals and relevant physiological parameters degrade the reliability of a signal, or even change its underlying information content. Here we test the hypothesis that the relationship between signal trait elaboration and a central component of organismal health – oxidative stress – differs across closely related populations that have diverged in signal use and preferences. In the recently diverged barn swallow subspecies complex (Hirundo rustica, Family: Hirundinidae), different populations use different traits as sexual signals. Two of these traits, ventral breast plumage color and tail streamer length, differ markedly between North American H. r. erythrogaster and European H. r. rustica. Despite this divergence, variation in ventral plumage color was similarly associated with measures of oxidative damage across both populations. However, the directionality of these relationships differed between the sexes: darker male barn swallows had higher levels of plasma oxidative damage than their lighter counterparts, while the opposite relationship was seen in females. In contrast, relationships between tail streamer length and measures of oxidative stress were not consistent across populations. Some analyses indicated that in European H. r. rustica, where males bearing elongated streamers are preferred as mates, longer-streamered males were more oxidatively stressed; however, the opposite pattern was suggested in North American H. r. erythrogaster. Tail streamer length was not associated with measures of oxidative stress in females of either population. Differences in the physiological state of stronger signalers across populations and between the sexes may be related to costs or constraints on signal elaboration (e.g., biochemical pathways associated with melanogenesis), or reflect differences in how signal-mediated social interactions influence oxidative stress. Overall, our results suggest that while some phenotypic traits appear to be capable of conveying similar physiological information regardless of their use as signals, divergence in other phenotypic traits may be associated with shifts in their information content

    Signal Traits and Oxidative Stress: A Comparative Study across Populations with Divergent Signals

    Get PDF
    Diverging populations often shift patterns of signal use – a process that can contribute to reproductive isolation and speciation. Yet it is not clear why most traits gain or lose signal value during divergence. One reason this could occur is because changes in the relationship between signals and relevant physiological parameters degrade the reliability of a signal, or even change its underlying information content. Here we test the hypothesis that the relationship between signal trait elaboration and a central component of organismal health – oxidative stress – differs across closely related populations that have diverged in signal use and preferences. In the recently diverged barn swallow subspecies complex (Hirundo rustica, Family: Hirundinidae), different populations use different traits as sexual signals. Two of these traits, ventral breast plumage color and tail streamer length, differ markedly between North American H. r. erythrogaster and European H. r. rustica. Despite this divergence, variation in ventral plumage color was similarly associated with measures of oxidative damage across both populations. However, the directionality of these relationships differed between the sexes: darker male barn swallows had higher levels of plasma oxidative damage than their lighter counterparts, while the opposite relationship was seen in females. In contrast, relationships between tail streamer length and measures of oxidative stress were not consistent across populations. Some analyses indicated that in European H. r. rustica, where males bearing elongated streamers are preferred as mates, longer-streamered males were more oxidatively stressed; however, the opposite pattern was suggested in North American H. r. erythrogaster. Tail streamer length was not associated with measures of oxidative stress in females of either population. Differences in the physiological state of stronger signalers across populations and between the sexes may be related to costs or constraints on signal elaboration (e.g., biochemical pathways associated with melanogenesis), or reflect differences in how signal-mediated social interactions influence oxidative stress. Overall, our results suggest that while some phenotypic traits appear to be capable of conveying similar physiological information regardless of their use as signals, divergence in other phenotypic traits may be associated with shifts in their information content

    Detecting Bias in Large-Scale Comparative Analyses: Methods for Expanding the Scope of Hypothesis-Testing with HormoneBase

    Get PDF
    To address large-scale questions in evolutionary biology, the compilation of data from a variety of sources is often required. This is a major challenge in the development of databases in organismal biology. Here, we describe the procedure we used to reconstruct the phylogeny of the 474 species represented in HormoneBase, including fish, amphibians, mammals, birds, and reptiles. We also provide the methodology used to compile vertebrate environmental, life history, and metabolic rate data for use in conjunction with the HormoneBase database to test hypotheses of the evolution of steroid hormone traits. We then report a series of analyses using these data to determine the extent to which field measures of circulating hormones and associated life history data exhibit taxonomic and geographic bias. By providing a detailed description of the approaches used to compile and evaluate these data and identifying potential biases in the collection of these data, we hope to make the HormoneBase database a more broadly useful resource for the scientific community to address a diversity of comparative questions

    Standing Variation and the Capacity for Change: Are Endocrine Phenotypes More Variable That Other Traits?

    Get PDF
    Circulating steroid hormone levels exhibit high variation both within and between individuals, leading some to hypothesize that these phenotypes are more variable than other morphological, physiological, and behavioral traits. This should have profound implications for the evolution of steroid signaling systems, but few studies have examined how endocrine variation compares to that of other traits or differs among populations. Here we provide such an analysis by first exploring how variation in three measures of corticosterone (CORT)—baseline, stress-induced, and post-dexamethasone injection—compares to variation in key traits characterizing morphology (wing length, mass), physiology (reactive oxygen metabolite concentration [d-ROMs] and antioxidant capacity), and behavior (provisioning rate) in two populations of tree swallow (Tachycineta bicolor). After controlling for measurement precision and within-individual variation, we found that only post-dex CORT was more variable than all other traits. Both baseline and stress-induced CORT exhibit higher variation than antioxidant capacity and provisioning rate, but not oxidative metabolite levels or wing length. Variation in post-dex CORT and d-ROMs was also elevated in the higher-latitude population in that inhabits a less predictable environment. We next studied how these patterns might play out on a macroevolutionary scale, assessing patterns of variation in baseline testosterone (T) and multiple non-endocrine traits (body length, mass, social display rate, and locomotion rate) across 17 species of Anolis lizards. At the macroevolutionary level, we found that circulating T levels and the rate of social display output are higher than other behavioral and morphological traits. Altogether, our results support the idea that within-population variability in steroid levels is substantial, but not exceptionally higher than many other traits that define animal phenotypes. As such, circulating steroid levels in free-living animals should be considered traits that exhibit similar levels of variability from individual to individual in a population

    IUCN Conservation Status Does Not Predict Glucocortoid Concentrations in Reptiles and Birds

    Get PDF
    Circulating glucocorticoids (GCs) are the most commonly used biomarkers of stress in wildlife. However, their utility as a tool for identifying and/or managing at-risk species has varied. Here, we took a very broad approach to conservation physiology, asking whether International Union for the Conservation of Nature (IUCN) listing status (concern versus no obvious concern) and/or location within a geographic range (edge versus non-edge) predicted baseline and post-restraint concentrations of corticosterone (CORT) among many species of birds and reptiles. Even though such an approach can be viewed as coarse, we asked in this analysis whether CORT concentrations might be useful to implicate species at risk. Indeed, our effort, relying on HormoneBase, a repository of data on wildlife steroids, complements several other large-scale efforts in this issue to describe and understand GC variation. Using a phylogenetically informed Bayesian approach, we found little evidence that either IUCN status or edge/non-edge location in a geographic distribution were related to GC levels. However, we did confirm patterns described in previous studies, namely that breeding condition and evolutionary relatedness among species predicted some GC variation. Given the broad scope of our work, we are reluctant to conclude that IUCN status and location within a range are unrelated to GC regulation. We encourage future more targeted efforts on GCs in at-risk populations to reveal how factors leading to IUCN listing or the environmental conditions at range edges impact individual performance and fitness, particularly in the mammals, amphibians, and fish species we could not study here because data are currently unavailable

    Metabolic Scaling of Stress Hormones in Vertebrates

    Get PDF
    Glucocorticoids (GCs) are stress hormones that can strongly influence physiology, behavior, and an organism’s ability to cope with environmental change. Despite their importance, and the wealth of studies that have sought to understand how and why GC concentrations vary within species, we do not have a clear understanding of how circulating GC levels vary within and across the major vertebrate clades. New research has proposed that much interspecific variation in GC concentrations can be explained by variation in metabolism and body mass. Specifically, GC concentrations should vary proportionally with mass-specific metabolic rates and, given known scaling relationships between body mass and metabolic rate, GC concentrations should scale to the -1/4 power of body mass and to the power of 1 with mass-specific metabolic rate. Here, we use HormoneBase, the newly compiled database that includes plasma GC concentrations from free-living and unmanipulated vertebrates, to evaluate this hypothesis. Specifically, we explored the relationships between body mass or mass-specific metabolic rate and either baseline or stress-induced GC (cortisol or corticosterone) concentrations in tetrapods. Our phylogenetically-informed models suggest that, whereas the relationship between GC concentrations and body mass across tetrapods and among mammals is close to -1/4 power, this relationship does not exist in amphibians, reptiles, and birds. Moreover, with the exception of a positive association between stress-induced GC concentrations and mass-specific metabolic rate in birds, we found little evidence that GC concentrations are linked to metabolic rate, although the number of species sampled was quite limited for amphibians and somewhat so for reptiles and mammals. Nevertheless, these results stand in contrast to the generally accepted association between the two and suggest that our observed positive association between body mass and GC concentrations may not be due to the well-established link between mass and metabolism. Large-scale comparative approaches can come with drawbacks, such as pooling and pairing observations from separate sources. However, these broad analyses provide an important counterbalance to the majority of studies examining variation in GC concentrations at the population or species level, and can be a powerful approach to testing both long-standing and new questions in biology

    HormoneBase, a Population-Level Database of Steroid Hormone Levels Across Vertebrates

    Get PDF
    Hormones are central regulators of organismal function and flexibility that mediate a diversity of phenotypic traits from early development through senescence. Yet despite these important roles, basic questions about how and why hormone systems vary within and across species remain unanswered. Here we describe HormoneBase, a database of circulating steroid hormone levels and their variation across vertebrates. This database aims to provide all available data on the mean, variation, and range of plasma glucocorticoids (both baseline and stress-induced) and androgens in free-living and un-manipulated adult vertebrates. HormoneBase (www.HormoneBase.org) currently includes \u3e6,580 entries from 476 species, reported in 648 publications from 1967 to 2015, and unpublished datasets. Entries are associated with data on the species and population, sex, year and month of study, geographic coordinates, life history stage, method and latency of hormone sampling, and analysis technique. This novel resource could be used for analyses of the function and evolution of hormone systems, and the relationships between hormonal variation and a variety of processes including phenotypic variation, fitness, and species distributions

    Macroevolutionary Patterning in Glucocorticoids Suggests Different Selective Pressures Shape Baseline and Stress-Induced Levels

    Get PDF
    Glucocorticoid (GC) hormones are important phenotypic mediators across vertebrates, but their circulating concentrations can vary markedly. Here we investigate macroevolutionary patterning in GC levels across tetrapods by testing seven specific hypotheses about GC variation and evaluating whether the supported hypotheses reveal consistent patterns in GC evolution. If selection generally favors the “supportive” role of GCs in responding effectively to challenges, then baseline and/or stress-induced GCs may be higher in challenging contexts. Alternatively, if selection generally favors “protection” from GC-induced costs, GCs may be lower in environments where challenges are more common or severe. The predictors of baseline GCs were all consistent with supportive effects: levels were higher in smaller organisms and in those inhabiting more energetically demanding environments. During breeding, baseline GCs were also higher in populations and species with fewer lifetime opportunities to reproduce. The predictors of stress-induced GCs were instead more consistent with the protection hypothesis: during breeding, levels were lower in organisms with fewer lifetime reproductive opportunities. Overall, these patterns indicate a surprising degree of consistency in how some selective pressures shape GCs across broad taxonomic scales; at the same time, in challenging environments selection appears to operate on baseline and stress-induced GCs in distinct ways
    • …
    corecore