39 research outputs found

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Inositol 1,4,5-trisphosphate releases intracellular Ca2+ in permeabilized chick atria

    No full text

    Presynaptic serotonergic inhibition of GABAergic synaptic transmission in mechanically dissociated rat basolateral amygdala neurons

    No full text
    The basolateral amygdala (ABL) nuclei contribute to the process of anxiety. GABAergic transmission is critical in these nuclei and serotonergic inputs from dorsal raphe nuclei also significantly regulate GABA release. In mechanically dissociated rat ABL neurons, spontaneous miniature inhibitory postsynaptic currents (mIPSCs) arising from attached GABAergic presynaptic nerve terminals were recorded with the nystatin-perforated patch method and pharmacological isolation.5-HT reversibly reduced the GABAergic mIPSC frequency without affecting the mean amplitude. The serotonergic effect was mimicked by the 5-HT1A specific agonist 8-OH DPAT (8-hydroxy-2-(di-n-propylamino)tetralin) and blocked by the 5-HT1A antagonist spiperone.The GTP-binding protein inhibitor N-ethylmaleimide removed the serotonergic inhibition of mIPSC frequency. In either K+-free or Ca2+-free external solution, 5-HT could inhibit mIPSC frequency.High K+ stimulation increased mIPSC frequency and 8-OH DPAT inhibited this increase even in the presence of Cd2+.Forskolin, an activator of adenylyl cyclase (AC), significantly increased synaptic GABA release frequency. Pretreatment with forskolin prevented the serotonergic inhibition of mIPSC frequency in both the standard and high K+ external solution.Ruthenium Red (RR), an agent facilitating the secretory process in a Ca2+-independent manner, increased synaptic GABA release. 5-HT also suppressed RR-facilitated mIPSC frequency.We conclude that 5-HT inhibits GABAergic mIPSCs by inactivating the AC-cAMP signal transduction pathway via a G-protein-coupled 5-HT1A receptor and this intracellular pathway directly acts on the GABA-releasing process independent of K+ and Ca2+ channels in the presynaptic nerve terminals

    The impact of extracellular and intracellular Ca2+ on ethanol-induced smooth muscle contraction

    No full text
    AIM: To evaluate the impact of extracellular and intracellular Ca(2+) on contractions induced by ethanol in smooth muscle. METHODS: Longitudinal smooth muscle strips were prepared from the gastric fundi of mice. The contractions of smooth muscle strips were recorded with an isometric force displacement transducer. RESULTS: Ethanol (164 mmol/L) produced reproducible contractions in isolated gastric fundal strips of mice. Although lidocaine (50 and 100 μmol/L), a local anesthetic agent, and hexamethonium (100 and 500 μmol/L), a ganglionic blocking agent, failed to affect these contractions, verapamil (1–50 μmol/L) and nifedipine (1–50 μmol/L), selective blockers of L-type Ca(2+) channels, significantly inhibited the contractile responses of ethanol. Using a Ca(2+)-free medium nearly eliminated these contractions in the same tissue. Ryanodine (1–50 μmol/L) and ruthenium red (10–100 μmol/L), selective blockers of intracellular Ca(2+) channels/ryanodine receptors; cyclopiazonic acid (CPA; 1–10 μmol/L), a selective inhibitor of sarcoplasmic reticulum (SR) Ca(2+)-ATPase; and caffeine (0.5–5 mmol/L), a depleting agent of intracellular Ca(2+) stores, significantly inhibited the contractile responses induced by ethanol. In addition, the combination of caffeine (5 mmol/L) plus CPA (10 μmol/L), and ryanodine (10 μmol/L) plus CPA (10 μmol/L), caused further inhibition of contractions in response to ethanol. This inhibition was significantly different from those associated with caffeine, ryanodine or CPA. Furthermore the combination of caffeine (5 mmol/L), ryanodine (10 μmol/L) and CPA(10 μmol/L) eliminated the contractions induced by ethanol in isolated gastric fundal strips of mice. CONCLUSION: Both extracellular and intracellular Ca(2+) may have important roles in regulating contractions induced by ethanol in the mouse gastric fundus
    corecore