48 research outputs found

    Comment on Glide Systems and Peierls Stresses in f.c.c. and b.c.c. Metals From Phonon Energies

    Get PDF
    The theory of Boffi et al. of Peierls stresses in crystals is criticized on physical grounds on a number of points

    Many-Body Potentials and Atomic-Scale Relaxations in Noble-Metal Alloys

    Get PDF
    We derive empirical many-body potentials for noble-metal alloy systems in the framework of the Finnis-Sinclair model [Philos. Mag. A 50, 45 (1984)] which is based on a second-moment approximation to the tight-binding density of states for transition metals [F. Cyrot, J. Phys. Chem. Solids 29, 1235 (1968)]. The most important extension of the model is a simple incorporation of interspecies interactions which involves fitting the alloying energies. The importance of properly accounting for the local atomic relaxations when constructing the potentials is emphasized. The observed principal features of the phase diagrams of the alloys are all well reproduced by this scheme. Furthermore, reasonable concentration dependences of the alloy lattice parameter and elastic constants are obtained. This leads us to suggest that fine details of the electronic structure may be less important in determining atomic structures than are more global parameters such as atomic sizes and binding energies

    \u3cem\u3eAb Initio\u3c/em\u3e Calculation of Phase Boundaries in Iron Along the bcc-fcc Transformation Path and Magnetism of Iron Overlayers

    Get PDF
    A detailed theoretical study of magnetic behavior of iron along the bcc-fcc (Bain’s) transformation paths at various atomic volumes, using both the local spin-density approximation (LSDA) and the generalized gradient approximation (GGA), is presented. The total energies are calculated by the spin-polarized full-potential linearized augmented plane waves method and are displayed in contour plots as functions of tetragonal distortionc/aand volume; borderlines between various magnetic phases are shown. Stability of tetragonal magnetic phases of γ-Fe is discussed. The topology of phase boundaries between the ferromagnetic and antiferromagnetic phases is somewhat similar in LSDA and GGA; however, the LSDA fails to reproduce correctly the ferromagnetic bcc ground state and yields the ferromagnetic and antiferromagnetic tetragonal states at a too low volume. The calculated phase boundaries are used to predict the lattice parameters and magnetic states of iron overlayers on various (001) substrates

    Ab initio simulation of a tensile test in MoSi\u3csub\u3e2\u3c/sub\u3e and WSi\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    The tensile test in transition metal disilicides with C11b structure is simulated by ab initio electronic structure calculations using full potential linearized augmented plane wave method (FLAPW). Full relaxation of both external and internal parameters is performed. The theoretical tensile strength of MoSi2 and WSi2 for [001] loading is determined and compared with those of other materials

    \u3cem\u3eAb Initio\u3c/em\u3e Study of the Ideal Tensile Strength and Mechanical Stability of Transition-Metal Disilicides

    Get PDF
    The ideal tensile test in transition metal disilicides MoSi2 and WSi2 with a C11b structure is simulated by ab initio electronic structure calculations using the full-potential linearized augmented plane wave method. The theoretical tensile strength for [001] loading is determined for both disilicides and compared with that of other materials. A full relaxation of all external and one internal structural parameter is performed, and the influence of each relaxation process on energetics and strength of materials studied is investigated. Differences in the behavior of various interatomic bonds including tension-compression asymmetry are analyzed and their origin in connection with the changes of the internal structural parameter is traced. For comparison, the response of bonds in MoSi and CoSi with B2 structure to the [001] loading is also studied

    Calculation of the Positions of the α- and β-bands in the Electronic Spectra of Benzenoid Hydrocarbons Using the Method of Limited Configuration Interaction

    Get PDF
    The positions of the α- and β-bands in the electronic absorption spectra of twenty aromatic benzenoid hydrocarbons were calculated by the semiempirical method of limited configuration interaction in the π-electron approximation using the Huckel molecular orbitals. The agreement of the experimental and calculated values is good for the β-band whereas a systematic deviation is observed for the α-band. This deviation cannot be removed by extending the configuration interaction of the monoexcited states constructed from the molecular orbitals considered. However, the consideration of electronic repulsion enables us to explain the character of the dependences of the experimental excitation energies on the excitation energies obtained by the simple Huckel method of molecular orbitals. Using a suitable choice of semiempirical parameters different for various electronic transitions (showing no large mutual differences) yields semiempirical interpolation formulas for the; p-, α-, and β-bands which give very good agreement with the corresponding experimental excitation energies for the compounds studied

    Atomistic Studies of Deformation and Fracture in Materials with Mixed Metallic and Covalent Bonding

    Get PDF
    Materials with high melting temperatures (over 2000°C) tend to be brittle at ambient and even relatively high temperatures. High melting temperatures originate in strong interatomic bonding arising from formation of dd or dp bonds that also affect and/or control crystal structures and properties of extended defects, such as dislocations, grain boundaries. These, in turn, govern plastic deformation and fracture. General goal: Establish relationship between electronic structure and mechanical behavio

    Dislocation Screening and the Brittle-to-Ductile Transition: A Kosterlitz-Thouless Type Instability

    Get PDF
    We propose a new model for the brittle-to-ductile transition based on the Kosterlitz-Thouless concept of dislocation screening. In this model, thermal fluctuations assisted by the applied stress drive the spontaneous generation of dislocations and the instability occurs well below the melting temperature. In the limit of zero stress, our model reduces to the Kosterlitz-Thouless theory of the melting transition, and, in the opposite limit of zero temperature, we obtain the Rice-Thomson result for the brittle-to-ductile transition

    Radial Distribution Function and Structural Relaxation in Amorphous Solids

    Get PDF
    A method of interpreting radial distribution functions (RDF) of amorphous metals is proposed in which the role of the local atomic structure is emphasized. It is found that the width and height of the peaks of the RDF are related to the second moment of the atomic-level hydrostatic stress distribution ⟨p2⟩. The results of this analysis are then used to explain the details of the changes that occur in the RDF when structural relaxation takes place. The theoretical ▵RDF is found to be in excellent agreement with the results of a computer study and previous experimental results. It is further proposed that changes in ⟨p2⟩ may be most easily accounted for in terms of changes in the density of the structural defects defined in terms of the local fluctuations in the hydrostatic stress. In this way the changes that occur in the structure of amorphous metal during structural relaxation, as represented by the RDF, may be explained in terms of the motion and annihilation of these structural defects. It is concluded that the number density of defects which could account for the observed changes in the experimental RDF is 10%. It is also found that while the hydrostatic stress distribution may be significantly changed during structural relaxation, the distribution of the atomic-level shear stresses remains unaltered

    Monte Carlo Analysis of Stress-Directed Phase Segregation in Binary Thin Film Alloys Under Nonisothermal Annealing

    Get PDF
    The use of patterned stress fields to direct phase separation in thin film alloys is investigated computationally with Monte Carlo simulations in which atomic interactions are represented by a Lennard-Jones potential. We show that careful design of annealing schedules based on consideration of the system phase diagram can lead to vastly enhanced patterning kinetics. In particular, by avoiding the low temperature formation of highly stable nuclei within the entire system, the kinetics of patterning are accelerated by rapid monomerdiffusion, rather than classical Ostwald ripening in which small precipitates must dissolve to feed larger ones
    corecore