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Calculation of the Positions of the α- and β-bands in the Electronic Spectra
of Benzenoid Hydrocarbons Using the Method of Limited Configuration
Interaction

Abstract
The positions of the α- and β-bands in the electronic absorption spectra of twenty aromatic benzenoid
hydrocarbons were calculated by the semiempirical method of limited configuration interaction in the π-
electron approximation using the Huckel molecular orbitals. The agreement of the experimental and
calculated values is good for the β-band whereas a systematic deviation is observed for the α-band. This
deviation cannot be removed by extending the configuration interaction of the monoexcited states
constructed from the molecular orbitals considered. However, the consideration of electronic repulsion
enables us to explain the character of the dependences of the experimental excitation energies on the
excitation energies obtained by the simple Huckel method of molecular orbitals. Using a suitable choice of
semiempirical parameters different for various electronic transitions (showing no large mutual differences)
yields semiempirical interpolation formulas for the; p-, α-, and β-bands which give very good agreement with
the corresponding experimental excitation energies for the compounds studied.
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CALCULATION OF THE POSITIONS OF THE IX- AND P-BANDS 
IN THE ELECTRONIC SPECTRA OF BENZENOID HYDROCARBONS 

USING THE METHOD OF LIMITED CONFIGURATION INTERACTION 

J. KOUTECKY, J. PALDUS and V. ViTEK 

Institute of Physical Chemistry, Czechoslovak Academy of Sciences, Prague, 
and Mathematical-Physical Faculty of the Charles University, Prague 

Received April 17th, 1962 

The positions of the IX- and tJ-bands in the electronic absorption spectra of 
twenty aromatic benzenoid hydrocarbons were calculated by the semiempir
ical method of limited configuration interaction in the n-electron approxim
ation using the Huckel molecular orbitals. The agreement of the experimental 
and calculated values is good for the tJ-band whereas a systematic deviation is 
observed for the IX-band. This deviation cannot be removed by extending the 
configuration interaction of the monoexcited states constructed from the 
molecular orbitals considered. However, the consideration of electronic 
repulsion enables us to explain the character of the dependences of the 
experimental excitation energies on the excitation energies obtained by the 
simple Huckel method of molecular orbitals. Using a suitable choice of semi
empirical parameters different for various electronic transitions (showing no 
large mutual differences) yields semiempirical interpolation formulas for the; 
PO, IX-, and tJ-bands which give very good agreement with the corresponding 
experimental excitation energies for the compounds studied. 

In a recent study! the positions of the p-bands (according to the Clarclassification2
) 

of twenty benzenoid hydrocarbons have been calculated using the method of limited 
configuration interaction in the n-electron approximation. The LCAO molecular 
orbitals in the Huckel approximation were used for the construction of the wave 
functions describing individual configurations. The positions of the IX- and ,B-bands 
of the same group of compounds are estimated by the same method 1 in the work 
presented. 

Method of Calculation 

The method of calculation and the approximations employed are those used in the 
precedibg paperl (compare refs3 - 6). The distances between neighboring carbon atoms 
are taken equal to 1·39 A which, of course, is a rather crude approximation in some 
cases. The resonance integral between neighboring atomic orbitals is taken equal to 
-2·318 eV (see!) and the electronic repulsion integrals of the Coulomb type are 
approximated according to Mataga and Nishimoto 7 

(1) 
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Calculation of the Positions of the (X- and ~-Bands 

where r IlV is the distance between the fi-th and o-th carbon atom. Otherwise, the appro
ximations introduced by Pariser and Parr3 ,4 and Pople5 ,6 are used. 

The off-diagonal elements of the effective one-electron Hamiltonian F in the 
Huckel molecular orbital representation were neglected. We considered the mono
excited configurations to which the Huckel excitation energy lower than 1 IPI cor
responds. 

The extent of the configuration interaction was investigated. Therefore, the excitation 
energies e~(k = ex, /3) which follow from the interaction of the configurations 
11, 1 ~ 2') and 11, 2 --+ 1') of the same energy were also calculated (compare refs6

-
S
). 

Here and hereforewith we use the designation, in which II, i --+ r) denotes the singlet 
monoexcited configuration formed by the substitution of the ith bonding molecular 
orbital with the jth virtual orbital in the monodeterminantal ground state wave 
function. The orbitals are arranged according to the increasing absolute values of the 
diagonal matrix elements F jj • The bonding orbitals are denoted by 1, 2 ... N/2 and the 
virtual orbitals by 1', 2' ... N' /2, where N is the number of carbon atoms of the hydro
carbon. 

In the cases of naphthacene, pentacene, and dibenzo[b,deJJchrysene both the 
ransitions formed by the interaction of 11, 1 ~ 2') and 11,2--+ 1') are, however, 
torbidden. These monoexcited configurations belong to the irreducible representa
fion BIg in naphthacene and pentacene (D Zh) and to the irreducible representation Ag 

tn dibenzo[b,deJJchrysene. 

Table I 

Assignment or Irreducible Representations to Monoexcited States for Various Transitions 
According to Clar Classification 

Group D6h DZh C Zy C Zh C lh 

Compound 1,20 2, 4, 6, 9, 11, 3,5,10,12,14, 7,15,19 8, ]3 
16 17,18 

p B zu B zu Bz Bu A' 

BI:! B3u 
a 

Al B} A' 

{3 E lu 

a Pentacene is an exception as its mono excited configurations producing the (X-transition belong 
to the irreducible representation BIg' b Dibenzo[bdeflchrysene is an exception as its monoexcited 
configurations producing the (X-transition belong to the irreducible representation A g • 

The full configuration interaction was considered for four compounds: anthracene 
(D Zh)' chrysene (CZh)' benzo[aJanthracene (Clh) and benzo[e]pyrene (CzJ. The con
figuration interaction for coronene (D6h) was extended so that it included the con
figurations formed by excitations from the nine highest bonding molecular orbitals 
to the nine lowest virtual orbitals. The consideration of the configurations with the 
Huckel excitation energy up to 1 IPI for benzene and naphthalene includes all mono
excited configurations. As the off-diagonal elements of the Hamiltonian in the repre-
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Koutecky, Paldus, Vitek: 

sentation of the mono excited configurations are small for the singlet states in com
parison to the diagonal elements the perturbation method may be used for the cal
culation of the excitation energies of the monoexcited states following from con-
figuration interaction. ~. 

If we define the longest-wavelength permitted transition as the p-band and the 
second longest-wavelength permitted transition as the p-band we obtain for various 
symmetry the assignment of the corresponding monoexcited states to the irreducible 
representations as given in Table I. The applicability of the perturbation method 
enables a restriction of the calculation of the matrix elements of the Hamiltonian 
in the mono excited state representation only to the elements Hk1 , where k denotes 
the configuration for which the diagonal element Kkk is the smallest between all 
configurations which we must consider for the transition given. Further, it is neces
sary to compute all diagonal elements. 

T a ble II 

Excitation Energies of the fl-Band 
E~ according to Huckel approximation in fl units, 4 calculated by first order configuration 
interaction, c ~ obtained by configuration interaction to 1 \fl \, E~xp experimental values2 (20°C); 

E~, E,~ E~xp are given in eV. . 

I D";,, I Compound 

I 
E~(fl) 

I 

E~ 
i 

c ~ 
, 

E~xp I , P -:-e xp 

1 

I 
benzene I 2·000 6·82 6·82 6'77 - 0,05 

2 naphthalene 1·618 5'75 5'72 5'61 - 0'11 
. 3 

! 
phenanthrene 1' 374 5·05 4'93 4'94 +0'01 

4 anthracene 1'414 5·09 5·04 4'92 - 0'12 
5 benzo [c ]phenanthrene 1·222 4' 51 4·44 4'41 - 0·03 
6 pyrene 1·324 4'76 4·63 4' 55 - 0'08 
7 

I 

chrysene 1·312 4'91 4'88 4·65 - 0·23 
8 benzo[a]anthracene 1·167 4'43 4'31 4'28 - 0'03 
9 

I 
naphthalene 1·295 4·76 4'71 4'53 - 0'18 

10 picene 1·182 4'46 4'32 4'32 +0'00 
11 perylene 1·347 4·87 4-80 4'96 +0'16 
12 naphthalene 0·958 3-85 3'78 3'91 +0'13 
13 benzo[a]pyrene 1'173 4'49 4·29 4'18 - 0'11 
14 di benzo [a,c ]anthracene 1'213 4' 39 4'34 4'28 - 0'06 
15 dibenzo[a,h}anthracene 1' 158 4·56 4' 15 4'13 - 0'02 
16 pentacene 1'220 4'49 4'29 4'00 - 0'29 
17 benzo[e}pyrene 1'215 4'47 4·43 4·29 - 0·14 
18 . benzo[rst]pentaphene 1'024 3'98 3·81 3'73 - 0'08 
19 di benzo [b,def]chrysenea 1'096 4'05 4'03 3-97 -0,09 
20 

I 
coronene 1'078 4·43 4'34 4'07 -0'27 

I 
a Compare Table I; the forbidden transition Ag is given. 
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Calculation of the Positions of the 0(- and ~-Bands 

Results and Discussion 

Comparison of the Results of Calculation with Experimental Data 

Tables II and III and Figs 1 and 2 give the results of calculations of the f3- and IX

bands and comparison with the experimental data_ The assignment of experimental 
bands was carried out according to Clar2 

_ The f3-band of benzene was taken according 
to Mason9

_ The theoretically calculated position of the f3-band in dibenzo[b,deJ} 
chrysene according to definition previously given shows worse agreement with the 
experiment than the for,bidden second longest-wavelength transition Ag_ It cannot be 
ruled out that the maximum experimentally found assigned to the f3-band may be 
formed by superposition of the band corresponding to the Ag transition on the band 
due to the permitted Bu transition of somewhat shorter wavelength_ Therefore we take 

Table III 

Excitation Energies of the a -Band 

clI According to HUckel approximation in f3 units, cp calculated by fi~st order configuration inter
action, ca. obtained by configuration a. in~eraction to 1. \f3 \, c~xp experimental values2 (20°C); cp, 

c , cexp are given III eV, 

D,,',o l I 
I 

I 
I 

1 ,'1,' Compound E'tJ(f3) Ep b ca. 

I 
c:xp I" -'''I c~xpl c~xp I 

exp 

I 

1 benzene 2'000 4'76 4'76 4'76 0·00 1'42 1·43 
2 naphthalene 1'618 4' 13 4·00 3·99 - 0·01 1'41 1·43 
3 phenanthrene 1-374 3'98 3'77 3·60 -0'17 1-37 1'31, 
4 anthracene 1'414 3·81 3'66 - - - 1-38 
5 benzo[c ]phenanthrene 1'222 3'87 3-65 3-33 -0-32 1-32 1-22 
6 pyrene 1-324 3-59 3-43 3-34 -0-09 1-36 1-35 
7 chrysene 1'312 3'77 3-59 3-45 -0-!4 1-35 1-36 
8 benzo[a]anthracene 1-167 3-83 3-59 3-22 -0-37 1-33 1-20 
9 naphthacene 1-295 3'75 3-59 - -0-37 - 1·31 

10 picene \ -182 3-85 3:39 3·30 -0,09 \-31 1-27 
11 perylene 1-347 3-84 3-66 3-67 '~ 0-01 1-35 1-31 
12 pentaphene 0-958 3-58 3-30 2-93 -0-37 1-33 1-15 
13 benzo[a]pyrene 1-173 3-49 3-34 3-08 -0-26 1-36 1-28 
14 dibenzo [a,c ]anthracene 1-213 3-71 3-47 3-31 -0-16 1-29 1-25 
15 dibenzo [a,111anthracene 1-158 3-54 3-37 3-14 -0-23 1·32 1-23 
16 pentacenea 0-838 3-41 3-10 2-90 - 0'20 1-38 1-38 

17 benzo[e 1pyrene 1-215 3-74 3-56 3-19 - 0-37 1-34 1-24 

18 benzo[rst]pentaphene 

I 

1-024- 3-43 3-22 2-86 -0-36 1-30 1-18 

19 dibenzo[b,de!1chryseneb 1-096 3-93 3-75 - - - 1-07 

20 coronene 1-078 3-19 3-17 2-90 -0-27 1-40 1-37 

a Compare Table 1. The transition B1g is given; b Compare Table 1. The transition Bu is given_ 
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in the Tables the excitation energy of the corresponding Ag transition . even though 
this assignment is disputable. Figs 3a - d compare the excitation energies calculated 
with the absorption curves experimentally observed and also show additional tran-

110~ 
70 ~1 

5 09 

15 J 1~ 
&20 

12 0:r~ 16 
18 

/' 
Y''/ 

/' 
/ 

/ 
/ 

/r 
/ 

33L-------~-------L------~--------~--~ 

E~ eV 

Fig. 1 
Comparison of Calculated Excitation Energies €p with Corresponding Experimental Values €~xp 
Designation of compounds, see Table II. Full straight line eP = c~xp; the regression line is dashed. 

'5 

2'----------''----------1---------1----1 
2 

E''' ,eV 

Fig. 2 
Comparison of Calculated Excitation Energies sa. with Corresponding Experimental Values s~l<P 
Designation of compounds see Table III. Full straight line e~xp = 8<1., the regression line is dashed. 
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sitions belonging to the irreducible representations from Table I which occur in the 
near ultraviolet region. Only the interaction of the configurations of the same ex
citation energy was considered in the calculatio n of these. additional transitions. 
Otherwise stated, the positions of the correspon ding maxima belonging to these 
transitions are estimated from the values of the diagonal elements of the Hamiltonian 
for the following functions 

11; i, k; ±) = I/J2[ll, i --+ kf) ± 11 , k --+ if)], (2) 
and 

11, i. i) = 11; i --+ if). 

The correlation and regression coefficients of the dependences of the experimental 
excitation energy on the theoretical estimates e~, e; and ek(k = ~,P) a~e given in 
Table IV. P~ is the excitation energy according to Hiickel (using the value p = 

= -2·318 eV), ek is the excitation energy calculated by configuration interaction 
up to 1 IPI . 

The agreement of the p-band is satisfactory since the standard deviation of the 
theoretical and experimental excitation energies is only little larger than 0·1 e V 
(0'125eV for the set without pentacene, 0·140eV for the whole set studied). The 
agreement for pentacene is similarly as in the case of the p-band considerably less 

Table IV 

Correlation Coefficients r, Regression CoefficientsQ s, Standard Deviationsb D.y and Mean Values y 
for the Dependence of the Calculated Excitation Energies on the Experimental Values for the 

p-Band 

Quantities 

I 
,~(B)' I E~ 

CalcuJatedC 

I 
EP 

I 
Elxp 

r (E~xp, y) 0·977 0'980 0·987 -
r ' (E~xp, y) 0·986 0'984 0·990 -
s (E~xp, y) 1'286 1-037 0'992 -
S' (E~xp' y) 1'280 1'029 0'985 -
s (y, E!xp) 0'742 0'925 0'981 . -
s' (y, 6~xp) 0'758 0'942 0'993 -
D.y 1-635 0·236 0' 140 -
D.y' 1·660 0·214 0'125 -
y 2·941 4'076 4'603 4' 523 
y' 2·859 4'717 4'619 4'551 

a The regression line equation: y - y = s(y, x) . (x - x); b D.y = {~(yi - E~p)/(N - 1) }1/2, 

where i denotes the compound and N the number of the compounds studied; C the primed quanti
ties refer to the set of hydrocarbons without pentacene. 
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\( ~ 
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\ 
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a 

p 
I 

log' 
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II II 

loge 

280 320 

1.3· f3 a 

I 

200 240 280 320 

d 

f3 p a 

I I 
log, 1\ 

\. ,'-....... ~ .. \ ... "'\P 

\ .. ,/ \ 
"'\ .a 

~\ 
\\ 

1L---~----~-----L~ 
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b 

a p 

I 
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1.3' p 

I 
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Calculation of the Positions of the ot- and ~-Bands 

precise than that found for other compounds and again it is evident that linear 
annelation produces anomalous effects which phenomenon should further be studied. 
The agreement of theoretical and experimental values is far less satisfactory for the 
a-band (the standard deviation is 0·249 for the set without pentacene and 0·246 for 
the whole set studied). Clar2 has found that the ratio of the wavelengths of the a-band 
and p-band J..~/J..fJ is approximately constant and equal to 1·3 (compare ref. 9

). Table III 
also demonstrates that the corresponding theoretical values of this ratio are also 
found to have approximately this walue even though they are lower than the values 
experimentally observed for the majority of larger hydrocarbons. However, it is 
interesting that the larger theoretical values in the ratio J..~/J..fJ for benzene and naph
thalene (higher than 1·4) agree well with the experimental values. The excessive 
decrease of the theoretical ratio J..~/J..fJ for larger hydrocarbons is evidently related to 
the too small values of J..~ predicted on the basis of the calculations carried out in 
this study. 

Table V 

Correlation Coefficients r, Regression Coefficients a s, Standard Deviations /:1y and Mean Values y 
for the Dependence of the Calculated Excitation Energies on the Experimental Values for the 

()C-Band 

Quantities 

I 
Er:!. E~ 

I 
Er:!. e: xp Calculatedb H. 

r (E~xp, y) 0·972 0·944 0·975 -
r' (E~xp, y) 0·983 0·938 0·970 -
s (E~xp' y) 0·753 1·270 1·188 -
s' (E~xp' y) 0·808 1·268 1·203 -
s (y, E~xp) 1·254 0·701 0·800 -
s' (y, E~xp) 1·196 0·695 0·781 -
/:1y 0·501 0·448 0·246 -
/:1y' 0·464 

I 

0·443 0·249 -
y 2·890 3·748 3·551 3·351 
y' 3·315 3·769 3·579 3·379 

a For symbols see Table IV; b the primed quantities refer to the set of hydrocarbons without 
pentacene. 

Fig. 3 
Comparison of Experimental Electronic Spectrum with Calculated Excitation Energies 

a Benzene, b naphthalene, c perylene, d dibenzo[b,deflchrysene. The permitted-transitions are 
full, forbidden transitions are dashed. The estimates of positions of the p-, ()C-, and f1-bands 
corresponding to the excitation energies are depicted above the spectra. Other excitation energies 
were estimated on the basis of the values of the corresponding diagonal elements of H in the 

representation of functions of the type (2). 
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The deviations of the a-band are .not caused by insufficient extent of the configur
ation interaction. Table VI which gives the results of the extending of the configur
ation interaction for the representatives of various symmetry groups demonstrates 
that such extending has, however, little effect on the results of calculations. 

Interpolation Formula for Individual Absorption Bands 

The Hamiltonian matrix elements in the monoexcited state representation used i.l1 
our approximatiol} .are dependent on the quantities of the three types: on the reson
ance integral {J, on the integrals rill' = J- A 3 and integrals YIlv(1l =1= v) taken equal to 
YIlil for r ~ O. At the same time it is ne~essilfY to take the integrals YIlil as quantities 
of different physical type than YIlv for 11 =1= v. It may occur that the considerably 
simplified method using only two semiempirical parameters artificially reduced quanti
ties of different types into a single mathematical expression. It is interesting that the 
matrix elements of the type 

<1; i, k; - IH - Eol.; i, k; -), (3) 

where Eo is the ground state energy, are independent on the values of Yllll , and there
fore the position of the a-band is not dependent on the values of Yill'" 

Table VI 

Influence of the Extent of Configuration Interaction 
ek Excitation energy for CI to 1 IPI. e~ excitation energy for CI extended by the number of con

figurations given in the Table in contrast to the original limitation. 

I Origmal Extended 

I I 
," - ': De- Compound I Number of Number of ef! c ~ cf! - e ~ ea I e~ sign. I Con_figurat- Configurat-

I 
I 

IOns ions I 

4 anthracene 
I 

5 6 5-04 5-04 0'00 3-66 3'64
1 

0-02 
7 chrysene 7 24 4-88 4-81 0-07 3-59 

::; I 

0-06 
8 benzo[a]anthracene 

I 
13 45 4'31 4'29 0-02 -3-59 0·02 

17 benzo [e ]pyrene 

I 

7 

I 

12 4-43 4'39 0-04 3-56 3-53 0-03 
20 coronene 4 7 4'34 4·32 0'02 3-17 3-03 0·14 

I I I 

In view of many simplifications in the method employed one cannot rule out that for different 
bands quantities of different type or different magnitude are neglected or that the positions 
of some bands are influenced by quantities which show no similar effect for other bands. For 
different excited states different SCF LCAO molecular orbitals should in fact be employed. Since 
we use the Huckel molecular orbitals we must expect that individual semiempirical parameters 
are different for various bands10

. Therefore one arrives at the conclusion to choose different 
empirical constants for different bands (compare refs10 , 11)_ However, it should be emphasized 
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that the expressions thus obtained for the positions of various absorption bands have only the 
character of interpolation formulas dependent on the theory employed. For this reason it is 
economical to use as a basis the simple empirical formulas and to vary the semiempirical parame
ters in order to obtain the best agreement with experiment. The usefulness of these expressions may 
only be confirmed when used for the collection of compounds which is satisfactorily representative. 
We assume our set of twenty hydrocarbons to be considered as representative . 

. We employed the following interpolation formulas for alternating benzenoid hyd
rocarbons 

(4) 

where /3\ ')I ~1' /(k are the semiempirical parameters and e~ the excitation energy ac
cording to Hi.ickel in /3 units. F~ is the expression appearing in e~ at ')I~ 1 

Fk = 20k ' ~(1 - Ok ,a) Icil'c~kl' ' (5) 
I' 

where ck,/L is the coefficient for the Ilth atomic orbital in the kth molecular orbital. 
Gk denotes the part of e~ dependent on ')Illv (Jl =l= v). For these quantities we find 

k = N / 2 [( 1 i) (nk i)] - (1 1 ) G I 1'+ k · kk+ 
i=l I n Inn 

+ (_1)°k , ~ (1 - Ok,P) (!, ::.) + 2(2)Ok,~ (1 - Ok,a) (! :::) (6) 

k = p, a, /3, 
where 

(7) 

and ')I llv are defined by equation (1). nP = 1, n~ is the number of the molecular 
orbital whose . element 

(1; 1, n~; + IH- Eoll ; 1, n~; + > 
has the smallest absolute value (n~ =1= 1) and the corresponding transition is permitted. 
Compound 19 is an exception in our assignment as we take 11~ = 2 although the 
corresponding transition is forbidden. Analogously 11~ is the number of the molecular 
orbital whose element 

<1; 1, no' ; - IH - Eo11; 1, na
; - > 

is the smallest and the corresponding transition .is forbidden. The expressions for 
Fk and G\ given in equations (5) and (6), are valid only for those compounds whose 
highest and second highest filled orbitals in the ground state are non degenerate due to 
symmetry. For these compounds (in our case for benzene and coronene) it is necessary 
to consider the configuration interaction to such extent to include configurations 
formed by transitions of electrons between these orbitals and the corresponding 

Vol. 28 (1963) 1477 
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virtual orbitals. The parameter (x:k ) -1 may be interpreted as a "dielectric constant" 
(compare the study performed by Julg12

). 

The parameters 13k, Y~1' x:k obtained by minimization of the sum of the squares 
of deviations (e~~p - e~) for the set of nineteen compounds (without pentacene) 
are given in Table VI, where the standard deviations are also included. The values 
of these deviations together with Fig. 4 de~onstrate that the interpolation formulas 
describe very well the positions of the ct-, 13-, and p-bands experimentally observed. 
Pentacene again shows an exceptional behaviour. 

5 

• 4 

2~------~------~------~------J-------~ 

2 4 5 
6 ['~ leV 

7 

Fig. 4 
Comparison of the Excitation Energies e~ Calculated from Equation (4) with the Corresponding 

Experimental Values e!<xp 
o lX-band; .• ,B-band, (j) p-band; e lX-band of pentacene, ~ ,B-band of pentacene, () p-band of 

pentacene. 

Comparison with the Huckel Method 

Fig. 5 shows that the correlation of the positions of the ct- and f3-bands experiment
ally observed with the corresponding Huckel excitation energies eH is no doubt 
less precise than thatfound for the p-band but it is quite good even in this case (com
pare Table IV). It is characteristic that the regression line for the ct-band in Fig. 5 
lies below the regression line for the f3-band and has a considerably smaller slope 
(0'753 in contrast to 1'286). Fig. 6, where the theoretical values ek (k = ct, 13) are plot
ted against e~ (k = ct, 13), shows a considerable resemblance to Fig. 5. 
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Table VII 

Semi empirical Parameters {3k, "k, and Y~l (Equation (4» and Standard Deviationsa Ayk 

Relevant {3k 

I 
"k 

I 
Y~l 

I 
Ayk 

I 
Ayk' 

Quantity 

p 2·392 

\ 

0·876 9·517 0·088 0·078 
{3 2·484 0·678 9·713 0·133 0·096 

I 

IX 2·363 0·454 - 0·144 0·056 

a In this case the standard deviation is defined Ay = {P[(C~)i - c:x.p)/(N - I)} 1/2; where c~ 

is the excitation energy calculated for the ith compound and kth band according to equation (4), 
E~xp is the corresponding experimental value, N is the number of compounds. The primed quantity 
refers to the hydrocarbon set without pentacene. 

I 

1-0 1·5 C~IPI 2-0 

Fig. 5 
Dependence of the Experimental Excitation Energies E:x.p on c~ 

• k = {3, 0 k = IX. For numbering of compounds see Table II. The regression lines are dashed. 

For the p-band it was found that the part of the expression for the excitation energy 
which is dependent on the electronic repulsion integrals 

(8) 
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I I 
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Fig. 6 
Dependence of the Theoretical Excitation Energies t:k on t:~ 

• k = {3, 0 k = IX. For numbering of compounds see Table II. 

is approximately constant. The analogous quantities for the ct.- and p-bands change 
markedly so that r IX is small for those hydrocarbons for which r P is large and inversely 
(compare Fig. 7). From Fig. 7 it is also evident that rk correlate with the "experimental 
quantity" 

(9) 

On the whole it is evident that the theory considering the interaction of the elec
trons describes a number of characteristic properties of the p-, P- and ct.-bands which 
cannot be accounted for by the simple MO LeAO method: 

1. We have already mentioned that the part of the excitation energy dependent 
on the electronic repulsion integrals r P is approximately constant. Therefore the 
resonance integral P obtained in the Huckel method and that in the method presented 
show nearly equal values. The mean value of r p is 1·39 eV so that the additive shift 
produced by the terms dependent on electronic repulsion is considerable. Thus it 
seems that the additive constant Dk in the relations 

(10) 

for k = p is related to electronic repulsion (DP = 1-32 eV). 
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2. r" approximately diminishes with the increasing B~ causing a decrease of the 
slope of the dependence of B~xp on B~ in contrast to the analogous quantity for the 
p-band. The additive constant appearing in equation (10) is also not negligible for 
k = r:I. and equals 1·18 eV. 

3. r P approximately increases withincreasing B~ so that the slope of the dependence 
of B~xp on B~ is larger than the analogous slope for the p-band. The additive cons
tant DP in equations (10) is equal to 0·82 eV. 

According to the assumptions made in the theory of Goodman and Shull ll the 
following relation should be valid 

and thus also 

The properties given of the r:I.-, and ,B-bands favour rather the following equation 

ra + rP = d . BH + C , 

where C is about 1 e V and the quantity d is very small. 

25 .------.--~-r---_.---r_--I 

rk eV 
exp' 

20 

1·5 

10 

05 

Vol. 28 (1963 J 

0·5 1-0 1·5 

Fig. 7 
Dependence of r;xp ~:m r k 

Compare equations (8') and (9) .• k = p, 0 k = iX. 

(11) 

(12) 

(13) 
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Pe310Me 

.51. KOYTel\KH, M. IIaJI~yc H B. BHTeK: Pac'lem nOIlO:J/ceHuu (X- u f3-nolloc fJ 31leKmpOHHOM 
cneKmpe 6eH30UOHbiX Y21lefJOOOpOOOfJ npu nOMO/lJu Memooa OZpaIlU'IeIlH020 fJ3aUMOOeUCmfJUfl KOH
(/iuzypaljuu. PaCC'llITaHbI nOJIOlKeHHl! (X- H fJ-rrOJIOC :meKTpOHHbIX cneKTpOB .n;Ba,z:(IIaTH apOMaTH'leCKHX 

6eH30HWlbIX yrJIeBOAopo~OB npH nOMOIl\H nOJIY3MllHpH'leCKOrO MeTo~a OrpaHH'leHHOrO B3aHMO

~eHCTBHSl KOHqmrypal\HH B Jr-3JIeKTpOHHOM npH6JIHlKeHHH C npHMeHeHHeM MOJIeKYIIl!PHbIX Op6HT 

XIOKKCrur . .ll:JIl! {J-nOJIOCbI YCTaHOBJIeHO xopOIIIee COBna.n;eHHe C 3KCnepHMeHTaJIbHbIMH 3Ha'leHHHMIl', 

B TO BpeMS! KaK B CJIy'lae (X -nOJIOCbI OTMe'lCHO CHCTeMaTH'leCKOe OTKJlOHeHHe. 3TO OTKJIOHeHHe HeJIb-

3l! YCTpaHHTb pacIIIHpeHHeM B3aHMo.n;eHCTBHSl KOHqmrypaUHH MOHoB036YlKeHHbIX COCTOSlHHii:, 

KOHCTpYHpoBaHHblx Ha OCHOBaHHH .n;aHHbIX MOJIeKyrurpHbIX Op6HT. O.n;HaKO, Y'lTeHHe OTTaJIKHBaHHl! 

3JIeKTpOHoB rr03BOJISleT 06bllCHHTb XapaKTep 3aBHcHMocTeii: 3KcnepHMeHTaJIbHbIX 3HeprHH: B036YlK

.n;eHHH OT 3HeprHH B036YlK.n;eHHll Ha OCHOBaHHH npocToro MeTo.n;a MOJIeKYIIl!PHbIX Op6HT XIOKKCrur. 

IIpH IlpHMeHeHIH! nOJIY3MllHpH'lecKHx rrapaMeTpOB, Pa3JIH'lHbIX .n:rur 3JIeKTpOHHbIX rrepexo.n;oB (o.n;

HaKO He O'leHb OTJIH'lalOIIJ;l!XCSl .n;pyr OT .n;pyra), 6bIDH rrOJIY'leHbI rrOJIy3MllHpH'leCKHe HHTepnorur

UHOHHble <!>0PMYJIbI ~JISl p-, (X - H {J-rrOJIOC, B CJIy'lae HCCJIe~OBaBIIIeHCll cepHH BeIl\eCTB ~alOIl\He O'leHb 

XopOI!Iee COBna~eHHe C COOTBeTCTBYIOIl\HMH 3KcnepHMeHTaJIbHbIMH 3HeprHlIMH B036YlK~eHHll. 
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