28 research outputs found

    Vendian to Cambrian carbonate reservoir types of the Siberian Platform

    No full text

    Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ0 photoproduction in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the impact-parameter dependent angular anisotropy in the decay of coherently photoproduced ρ0 mesons is presented. The ρ0 mesons are reconstructed through their decay into a pion pair. The measured anisotropy corresponds to the amplitude of the cos(2ϕ) modulation, where ϕ is the angle between the two vectors formed by the sum and the difference of the transverse momenta of the pions, respectively. The measurement was performed by the ALICE Collaboration at the LHC using data from ultraperipheral Pb−Pb collisions at a center-of-mass energy of sNN−−−√ = 5.02 TeV per nucleon pair. Different impact-parameter regions are selected by classifying the events in nuclear-breakup classes. The amplitude of the cos(2ϕ) modulation is found to increase by about one order of magnitude from large to small impact parameters. Theoretical calculations, which describe the measurement, explain the cos(2ϕ) anisotropy as the result of a quantum interference effect at the femtometer scale that arises from the ambiguity as to which of the nuclei is the source of the photon in the interaction

    Measurement of the production cross section of prompt Ξ0c baryons in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum (pT) differential production cross section of the promptly-produced charm-strange baryon Ξ0c (and its charge conjugate Ξ0c¯¯¯¯¯¯) is measured at midrapidity via its hadronic decay into π+Ξ− in p−Pb collisions at a centre-of-mass energy per nucleon−nucleon collision sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The Ξ0c nuclear modification factor (RpPb), calculated from the cross sections in pp and p−Pb collisions, is presented and compared with the RpPb of Λ+c baryons. The ratios between the pT-differential production cross section of Ξ0c baryons and those of D0 mesons and Λ+c baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt Ξ0c baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p−Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model in which hadronisation is implemented via quark coalescence. The pT-integrated cross section of prompt Ξ0c-baryon production at midrapidity extrapolated down to pT = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p−Pb collisions at midrapidity

    Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations

    No full text
    A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson K0S and the double-strange baryon Ξ± is measured, in each event, in the azimuthal direction of the highest-pT particle (``trigger" particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at s√=5.02 TeV and s√=13 TeV using the ALICE detector at the LHC. The per-trigger yields of K0S and Ξ± are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading Ξ±/K0S yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of Ξ± with respect to K0S is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The K0S and Ξ± per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely PYTHIA 8.2 with the Monash tune, PYTHIA 8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of K0S and Ξ±

    Measurement of 3ΛH production in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    he first measurement of 3ΛH and 3Λ¯¯¯¯H¯¯¯¯ differential production with respect to transverse momentum and centrality in Pb−Pb collisions at sNN−−−√=5.02~TeV is presented. The 3ΛH has been reconstructed via its two-charged-body decay channel, i.e., 3ΛH→3He+π−. A Blast-Wave model fit of the pT-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the 3ΛH kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of 3ΛH and 3He is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements
    corecore