27 research outputs found

    Stilbene Analogs and Methods of Treating Cancer

    Get PDF
    Stilbene analogs and pharmaceutical compositions that are useful for the treatment of various cancers, including without limitation, colorectal cancer (CRC) and breast cancer are disclosed. The halogenated stilbene analogs include nitrogen heteroaryl groups and/or amino groups on the stilbene ring

    Stilbene Analogs and Methods of Treating Cancer

    Get PDF
    Stilbene analogs and pharmaceutical compositions that are useful for the treatment of various cancers, including without limitation, colorectal cancer (CRC) and breast cancer are disclosed. For the complete abstract, please download this patent

    Halogenated Diarylacetylenes and Methods of Treating Cancer

    Get PDF
    Halogenated diarylacetylenes, e.g., diarylacetylenes having at least one halo substituent in one aryl ring and an amine in the opposing aryl ring, can inhibit the proliferation of LSI 74T colon cancer cells through the inhibition of c-myc and induction of the cyclin-dependent kinase inhibitor-I (i.e., p21(Wifl/Cipl)). Such compounds are useful as antineoplastic agents

    Phenylethynyl-Substituted Benzenes and Heterocycles for the Treatment of Cancer

    Get PDF
    Halogenated phenylethynyl-substituted heterocycles that possess either an N-alkylamino or N,N-dialkylamino group attached to the heterocycle or halogenated phenylethynyl-substituted benzenes that a nitrogen-containing heterocycle attached to the benzene inhibit the proliferation cancer cells and are useful antineoplastic agents

    Arylquinoline and Analog Compounds and Use Thereof to Treat Cancer

    Get PDF
    The subject technology relates to arylquinoline compounds and their use for treating cancer or cancer metastasis. The compounds of the subject technology promote cells to secrete a pro-apoptotic tumor suppressor, i.e., prostate apoptosis response-4 (Par-4), which in turn promote apoptosis in cancer cells or metastatic cells

    Cytisine-Linked Isoflavonoid Antineoplastic Agents for the Treatment of Cancer

    Get PDF
    Cytisine-linked isoflavonoids, or pharmaceutically acceptable salts thereof or pharmaceutically acceptable compositions thereof, are useful for the treatment of conditions in which cells have a reliance on peroxisomal HSD17B4 to degrade very long chain fatty acids and provide necessary energy for cell proliferation, such as is seen in colorectal cancer and prostate cancer, for example

    Induction of AMPK Activation by \u3cem\u3eN,N\u27\u3c/em\u3e-Diarylurea FND-4b Decreases Growth and Increases Apoptosis in Triple Negative and Estrogen-Receptor Positive Breast Cancers

    Get PDF
    Purpose Triple negative breast cancer (TNBC) is the most lethal and aggressive subtype of breast cancer. AMP-activated protein kinase (AMPK) is a major energy regulator that suppresses tumor growth, and 1-(3-chloro-4-((trifluoromethyl)thio)phenyl)-3-(4-(trifluoromethoxy)phenyl)urea (FND-4b) is a novel AMPK activator that inhibits growth and induces apoptosis in colon cancer. The purpose of this project was to test the effects of FND-4b on AMPK activation, proliferation, and apoptosis in breast cancer with a particular emphasis on TNBC. Materials and methods (i) Estrogen-receptor positive breast cancer (ER+BC; MCF-7, and T-47D), TNBC (MDA-MB-231 and HCC-1806), and breast cancer stem cells were treated with FND-4b for 24h. Immunoblot analysis assessed AMPK, acetyl-CoA carboxylase (ACC), ribosomal protein S6, cyclin D1, and cleaved PARP. (ii) Sulforhodamine B growth assays were performed after treating ER+BC and TNBC cells with FND-4b for 72h. Proliferation was also assessed by counting cells after 72h of FND-4b treatment. (iii) Cell death ELISA assays were performed after treating ER+BC and TNBC cells with FND-4b for 72h. Results (i) FND-4b increased AMPK activation with concomitant decreases in ACC activity, phosphorylated S6, and cyclin D1 in all subtypes. (ii) FND-4b decreased proliferation in all cells, while dose-dependent growth decreases were found in ER+BC and TNBC. (iii) Increases in apoptosis were observed in ER+BC and the MDA-MB-231 cell line with FND-4b treatment. Conclusions Our findings indicate that FND-4b decreases proliferation for a variety of breast cancers by activating AMPK and has notable effects on TNBC. The growth reductions were mediated through decreases in fatty acid synthesis (ACC), mTOR signaling (S6), and cell cycle flux (cyclin D1). ER+BC cells were more susceptible to FND-4b-induced apoptosis, but MDA-MB-231 cells still underwent apoptosis with higher dose treatment. Further development of FND compounds could result in a novel therapeutic for TNBC

    Fluorinated N,N\u27-Diarylureas as Novel Therapeutic Agents Against Cancer Stem Cells

    Get PDF
    Colorectal cancer is the second-leading cause of cancer-related mortality in the United States. More than 50% of patients with colorectal cancer will develop local recurrence or distant organ metastasis. Cancer stem cells play a major role in the survival and metastasis of cancer cells. In this study, we examined the effects of novel AMP-activated protein kinase (AMPK) activating compounds on colorectal cancer metastatic and stem cell lines as potential candidates for chemotherapy. We found that activation of AMPK by all fluorinated N,N-diarylureas (FND) compounds at micromolar levels significantly inhibited the cell-cycle progression and subsequent cellular proliferation. In addition, we demonstrated that select FNDs significantly increased apoptosis in colorectal cancer metastatic and cancer stem cells. Therefore, FNDs hold considerable promise in the treatment of metastatic colorectal cancer, through elimination of both regular cancer cells and cancer stem cells

    Epigenetic Regulation of Wnt Signaling by Carboxamide-Substituted Benzhydryl Amines that Function as Histone Demethylase Inhibitors

    Get PDF
    Aberrant activation of Wnt signaling triggered by mutations in either Adenomatous Polyposis Coli (APC) or CTNNB1 (β-catenin) is a hallmark of colorectal cancers (CRC). As part of a program to develop epigenetic regulators for cancer therapy, we developed carboxamide-substituted benzhydryl amines (CBAs) bearing either aryl or heteroaryl groups that selectively targeted histone lysine demethylases (KDMs) and functioned as inhibitors of the Wnt pathway. A biotinylated variant of N-((5-chloro-8-hydroxyquinolin-7-yl) (4-(diethylamino)phenyl)-methyl)butyramide (CBA-1) identified KDM3A as a binding partner. KDM3A is a Jumonji (JmjC) domain-containing demethylase that is significantly upregulated in CRC. KDM3A regulates the demethylation of histone H3\u27s lysine 9 (H3K9Me2), a repressive marker for transcription. Inhibiting KDM3 increased H3K9Me2 levels, repressed Wnt target genes, and curtailed in vitro CRC cell proliferation. CBA-1 also exhibited in vivo inhibition of Wnt signaling in a zebrafish model without displaying in vivo toxicity

    Bis(\u3cem\u3eN\u3c/em\u3e-amidinohydrazones) and \u3cem\u3eN\u3c/em\u3e-(amidino)-\u3cem\u3eN\u3c/em\u3e\u27-aryl-bishydrazones: New Classes of Antibacterial/Antifungal Agents

    Get PDF
    The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicr obial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N\u27-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step, resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of the tested strains with minimum inhibitory concentration (MIC) values ranging from \u3c 0.5- \u3e 500 μM against bacteria and 1.0- \u3e 31.3 μg/mL against fungi; and in most cases, they exhibited either superior or similar antimicrobial activity compared to those of the standard drugs used in the clinic. We also observed minimal emergence of drug resistance to these newly synthesized compounds by bacteria and fungi even after 15 passages, and we found weak to moderate inhibition of the human Ether-à-go-go-related gene (hERG) channel with acceptable IC50 values ranging from 1.12-3.29 μM. Overall, these studies sh ow that bis(N-amidinohydrazones) and N-(amidino)-N\u27-aryl-bishydrazones are potentially promising scaffolds for the discovery of novel antibacterial and antifungal agents
    corecore