12 research outputs found

    State filling dependent luminescence in hybrid tunnel coupled dot-well structures

    Get PDF
    A strong dependence of quantum dot (QD)–quantum well (QW) tunnel coupling on the energy band alignment is established in hybrid 'In''As'/'GA''AS'-'IN IND. x''GA IND. 1-x''AS'/'GA''AS' dot–well structures by changing the QW composition to shift the QW energy through the QD wetting layer (WL) energy. Due to this coupling a rapid carrier transfer from the QW to the QD excited states takes place. As a result, the QW photoluminescence (PL) completely quenches at low excitation intensities. The threshold intensities for the appearance of the QW PL strongly depend on the relative position of the QW excitonic energy with respect to the WL ground state and the QD ground state energies. These intensities decrease by orders of magnitude as the energy of the QW increases to approach that of the WL due to the increased efficiency for carrier tunneling into the WL states as compared to the less dense QD states below the QW energy.MWN - Material World NetworkNational Science Foundation of the U.S. (DMR-1008107)Deutsche Forschungsgemeinschaft (Li 580/8-1)Korea Foundation for International Cooperation of Science & Technology (Global Research Laboratory project - K20815000003)

    Multilayers of InGaAs Nanostructures Grown on GaAs(210) Substrates

    Get PDF
    Multilayers of InGaAs nanostructures are grown on GaAs(210) by molecular beam epitaxy. With reducing the thickness of GaAs interlayer spacer, a transition from InGaAs quantum dashes to arrow-like nanostructures is observed by atomic force microscopy. Photoluminescence measurements reveal all the samples of different spacers with good optical properties. By adjusting the InGaAs coverage, both one-dimensional and two-dimensional lateral ordering of InGaAs/GaAs(210) nanostructures are achieved

    Si-Doped InAs/GaAs Quantum Dot Solar Cell with Alas Cap Layers

    No full text
    In this work, the effect of Si doping on InAs/GaAs quantum dot solar cells with AlAs cap layers is studied. The AlAs cap layers suppress the formation of the wetting layer during quantum dot growth. This helps achieve quantum dot state filling, which is one of the requirements for strong sub-bandgap photon absorption in the quantum dot intermediate band solar cell, at lower Si doping density. Furthermore, the passivation of defect states in the quantum dots with moderate Si doping is demonstrated, which leads to an enhancement of the carrier lifetime in the quantum dots, and hence the open-circuit voltage

    Si-Doped InAs/GaAs Quantum Dot Solar Cell with Alas Cap Layers

    No full text
    In this work, the effect of Si doping on InAs/GaAs quantum dot solar cells with AlAs cap layers is studied. The AlAs cap layers suppress the formation of the wetting layer during quantum dot growth. This helps achieve quantum dot state filling, which is one of the requirements for strong sub-bandgap photon absorption in the quantum dot intermediate band solar cell, at lower Si doping density. Furthermore, the passivation of defect states in the quantum dots with moderate Si doping is demonstrated, which leads to an enhancement of the carrier lifetime in the quantum dots, and hence the open-circuit voltage

    Long-Wavelength InAs/GaAs Quantum-Dot Light Emitting Sources Monolithically Grown on Si Substrate

    Get PDF
    Direct integration of III–V light emitting sources on Si substrates has attracted significant interest for addressing the growing limitations for Si-based electronics and allowing the realization of complex optoelectronics circuits. However, the high density of threading dislocations introduced by large lattice mismatch and incompatible thermal expansion coefficient between III–V materials and Si substrates have fundamentally limited monolithic epitaxy of III–V devices on Si substrates. Here, by using the InAlAs/GaAs strained layer superlattices (SLSs) as dislocation filter layers (DFLs) to reduce the density of threading dislocations. We firstly demonstrate a Si-based 1.3 µm InAs/GaAs quantum dot (QD) laser that lases up to 111 °C, with a low threshold current density of 200 A/cm2 and high output power over 100 mW at room temperature. We then demonstrate the operation of InAs/GaAs QD superluminescent light emitting diodes (SLDs) monolithically grown on Si substrates. The fabricated two-section SLD exhibits a 3 dB linewidth of 114 nm, centered at ~1255 nm with a corresponding output power of 2.6 mW at room temperature. Our work complements hybrid integration using wafer bonding and represents a significant milestone for direct monolithic integration of III–V light emitters on Si substrates

    Tuning Quantum Dot Luminescence Below the Bulk Band Gap Using Tensile Strain

    No full text
    Self-assembled quantum dots (SAQDs) grown under biaxial tension could enable novel devices by taking advantage of the strong band gap reduction induced by tensile strain. Tensile SAQDs with low optical transition energies could find application in the technologically important area of mid-infrared optoelectronics. In the case of Ge, biaxial tension can even cause a highly desirable crossover from an indirect- to a direct-gap band structure. However, the inability to grow tensile SAQDs without dislocations has impeded progress in these directions. In this article, we demonstrate a method to grow dislocation-free, tensile SAQDs by employing the unique strain relief mechanisms of (110)-oriented surfaces. As a model system, we show that tensile GaAs SAQDs form spontaneously, controllably, and without dislocations on InAlAs(110) surfaces. The tensile strain reduces the band gap in GaAs SAQDs by ∼40%, leading to robust type-I quantum confinement and photoluminescence at energies lower than that of bulk GaAs. This method can be extended to other zinc blende and diamond cubic materials to form novel optoelectronic devices based on tensile SAQDs
    corecore