134 research outputs found

    The A's, G's, C's, and T's of health disparities

    Get PDF
    In order to eliminate health disparities in the United States, more efforts are needed to address the breadth of social issues directly contributing to the healthy divide observed across racial and ethnic groups. Socioeconomic status, education, and the environment are intimately linked to health outcomes. However, with the tremendous advances in technology and increased investigation into human genetic variation, genomics is poised to play a valuable role in bolstering efforts to find new treatments and preventions for chronic conditions and diseases that disparately affect certain ethnic groups. Promising studies focused on understanding the genetic underpinnings of diseases such as prostate cancer or beta-blocker treatments for heart failure are illustrative of the positive contribution that genomics can have on improving minority health

    OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions

    Get PDF
    Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis

    Effects of Aspirin on Endothelial Function and Hypertension

    Get PDF
    PURPOSE OF REVIEW: Endothelial dysfunction is intimately related to the development of various cardiovascular diseases, including hypertension, and is often used as a target for pharmacological treatment. The scope of this review is to assess effects of aspirin on endothelial function and their clinical implication in arterial hypertension. RECENT FINDINGS: Emerging data indicate the role of platelets in the development of vascular inflammation due to the release of proinflammatory mediators, for example, triggered largely by thromboxane. Vascular inflammation further promotes oxidative stress, diminished synthesis of vasodilators, proaggregatory and procoagulant state. These changes translate into vasoconstriction, impaired circulation and thrombotic complications. Aspirin inhibits thromboxane synthesis, abolishes platelets activation and acetylates enzymes switching them to the synthesis of anti-inflammatory substances. SUMMARY: Aspirin pleiotropic effects have not been fully elucidated yet. In secondary prevention studies, the decrease in cardiovascular events with aspirin outweighs bleeding risks, but this is not the case in primary prevention settings. Ongoing trials will provide more evidence on whether to expand the use of aspirin or stay within current recommendations

    Relatively lower body mass index is associated with an excess of severe truncal asymmetry in healthy adolescents: Do white adipose tissue, leptin, hypothalamus and sympathetic nervous system influence truncal growth asymmetry?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In healthy adolescents normal back shape asymmetry, here termed truncal asymmetry (TA), is evaluated by higher and lower subsets of BMI. The study was initiated after research on girls with adolescent idiopathic scoliosis (AIS) showed that higher and lower BMI subsets discriminated patterns of skeletal maturation and asymmetry unexplained by existing theories of pathogenesis leading to a new interpretation which has therapeutic implications <it>(double neuro-osseous theory)</it>.</p> <p>Methods</p> <p>5953 adolescents age 11–17 years (boys 2939, girls 3014) were examined in a school screening program in two standard positions, standing forward bending (FB) and sitting FB. The sitting FB position is thought to reveal intrinsic TA free from back humps induced by any leg-length inequality. TA was measured in both positions using a Pruijs scoliometer as angle of trunk inclinations (ATIs) across the back at each of three spinal regions, thoracic, thoracolumbar and lumbar. Abnormality of ATIs was defined as being outside 2 standard deviations for each age group, gender, position and spinal region, and termed <it>severe </it>TA.</p> <p>Results</p> <p>In the sitting FB position after correcting for age,<it>relatively lower BMIs </it>are statistically associated with a greater number of severe TAs than with relatively higher BMIs in both girls (thoracolumbar region) and boys (thoracolumbar and lumbar regions).</p> <p>The relative frequency of severe TAs is significantly higher in girls than boys for each of the right thoracic (56.76%) and thoracolumbar (58.82%) regions (p = 0.006, 0.006, respectively). After correcting for age, smaller BMIs are associated with more <it>severe TAs </it>in boys and girls.</p> <p>Discussion</p> <p>BMI is a surrogate measure for body fat and circulating leptin levels. The finding that girls with relatively lower BMI have significantly later menarche, and a significant excess of TAs, suggests a relation to energy homeostasis through the hypothalamus. The hypothesis we suggest for the pathogenesis of severe TA in girls and boys has the same mechanism as that proposed recently for AIS girls, namely: severe TAs are initiated by a <it>genetically-determined selectively </it>increased hypothalamic sensitivity (up-regulation, i.e. increased sensitivity) to leptin with asymmetry as an adverse response to stress (hormesis), mediated bilaterally mainly to the growing trunk via the sympathetic nervous system <it>(leptin-hypothalamic-sympathetic nervous system (LHS) concept)</it>. The putative autonomic dysfunction is thought to be increased by any lower circulating leptin levels associated with relatively lower BMIs. Sympathetic nervous system activation with asymmetry leads to asymmetries in ribs and/or vertebrae producing severe TA when beyond the capacity of postural mechanisms of the somatic nervous system to control the shape distortion of the trunk. A test of this hypothesis testing skin sympathetic responses, as in the Rett syndrome, is suggested.</p
    corecore