32 research outputs found

    Dynamics of Attention in Depth: Evidence from Mutli-Element Tracking

    Full text link
    The allocation of attention in depth is examined using a multi-element tracking paradigm. Observers are required to track a predefined subset of from two to eight elements in displays containing up to sixteen identical moving elements. We first show that depth cues, such as binocular disparity and occlusion through T-junctions, improve performance in a multi-element tracking task in the case where element boundaries are allowed to intersect in the depiction of motion in a single fronto-parallel plane. We also show that the allocation of attention across two perceptually distinguishable planar surfaces either fronto-parallel or receding at a slanting angle and defined by coplanar elements, is easier than allocation of attention within a single surface. The same result was not found when attention was required to be deployed across items of two color populations rather than of a single color. Our results suggest that, when surface information does not suffice to distinguish between targets and distractors that are embedded in these surfaces, division of attention across two surfaces aids in tracking moving targets.National Science Foundation (IRI-94-01659); Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Attention in Depth: Disparity and Occlusion Cues Facilitate Multi-Element Visual Tracking

    Full text link
    Human observers can track up to five moving targets in a display with ten identical elements (Pylyshyn and Storm, 1988; Yantis, 1992). Previous experiments manipulated element trajectories to prevent intersections of element boundaries, evidently in the belief that transient overlaps among homogeneous elements make the task too hard. We examine whether depth cues such as occlusion (T-junctions) and disparity affect performance in a tracking task when element boundaries, as projected onto the two-dimensional plane of the monitor screen, are allowed to intersect. Elements move smoothly in depth, as well as in horizontal and vertical position, throughout a 7-second tracking period. A probe is then flashed, and subjects report whether the flash occurred on a target or on a non-target. Overlapping circular objects form T-junctions when shaded to appear like spheres or figure eight regions when rendered as disks. Two factors, disparity and T-junctions, are considered. Results from eight naive observers show that performance improves for displays with depth information (T-junctions or disparity), suggesting that depth cues are useful for multi-element tracking.National Science Foundation (IRI-94-01659); Office of Naval Research (N00014-92-J-1309, N00014-95-1-0657, N00014-94-1-0597, N00014-95-1-0409

    Pathway to investigate and assess the performance of solar ON-Grid plant

    Get PDF
    This study investigates the long-term performance of a 52-kW on-grid solar PV plant in the Mechanical ‘C’ block, SRM Institute of Science and Technology (SRMIST). This article delivers a simple approach that would act as a pivot for PV system assessment. Therefore, methodologies like Energy yield analysis, Energy distribution, and Life cycle costing are implemented. This empowers the methods to facilitate pre-auditing, energy conservation, and economic analysis. The performance ratio and a capacity factor of the 52-kW PV plant in 2020 are determined as 60% and 12.8%, respectively. The study offers that the plant has a less simple payback period and energy pack time for 2020. From this study, the issues identified in the plant are highlighted with the solution. It also paves the way for the researchers to suggest the solutions for the underutilisation of the plant, especially in the situations like fault occurrence, pandemic conditions, etc

    Smart energy monitoring and power quality performance based evaluation of 100-kW grid tied PV system

    Get PDF
    Globally, the demand for energy from renewable sources is growing due to the increasing electricity consumption and the pollution of fossil fuels. The government has framed various policies to facilitate green energy generation, encouraging renewable energy source usage through PV installations in multiple sectors, including educational institutions. The primary objective of this paper is to propose a methodological approach for analysing the performance of the installed PV system on the rooftop of a university building in Tamil Nadu, India. The site selected is favourable for electricity generation from PV systems with an average global solar radiation of 5.82 kWh/m2day. Solar energy changes periodically with annual and daily variations and is not steady due to seasonal changes. The step-by-step performance assessment and the annual performance of the 100-kW solar PV system, which was instituted in 2019, with the forecasted parameters, are presented in this paper. Therefore, the assessment analysis is carried out in four phases: feasibility assessment, Energy yield assessment, Life cycle assessment, and Power quality assessment. To improve the solar PV output and efficiency, considering the solar irradiation, temperature, wind velocity, etc., PV yield is measured to evaluate the PV system\u27s energy metrics. This paper also considers the carbon credits earned, solar power generated in the location, and the payback period. The power quality assessment is carried out in this paper to test the PV plant\u27s compliance with effective grid integration

    HIV policy: the path forward--a joint position paper of the HIV Medicine Association of the Infectious Diseases Society of America and the American College of Physicians.

    Get PDF
    Executive Summary The American College of Physicians (ACP) and the Infectious Diseases Society of America (IDSA) have jointly published 3 policy statements on AIDS, the first in 1986 [1], the second in 1988 [2], and the third in 1994 [3]. In 2001, the IDSA created the HIV Medicine Association (HIVMA), and this updated policy paper is a collaboration between the ACP and the HIVMA of the IDSA. Since the last statement, many new developments call for the need to reexamine and update our policies relating to HIV infection. First, there have been major advances in treatment for HIV infection that have transformed HIV/AIDS from a terminal illness to a chronic disease for many of those who have access to potent therapies and expert medical care [4]. Second, there has been a profound expansion and intensification of the global HIV pandemic, particularly in sub-Saharan Africa, coupled with significant US leadership and resources aimed at providing prevention and care services to affected populations in developing countries. Third, the concerns that were prevalent in the mid-1990s regarding the possibility of HIV transmission in health care settings have ultimately proven to be unfounded as the result of the adoption of universal precautions in those settings. In this article, we emphasize the public health and clinical imperatives for earlier identification of persons with HIV infection; the urgent need to expand access to state-of-the-art HIV care and treatment for infected individuals; the need for access to comprehensive prevention and education for those living with and those at risk for HIV infection; and the need for stronger national leadership to respond to the HIV epidemic in the United States and in the developing world. In December 2008, the ACP and HIVMA released a guidance statement on screening for HIV infection in health care settings that recommended that clinicians adopt routine screening for HIV infection and encourage patients to be tested. Also included in the guidance statement is a recommendation that clinicians determine the need for additional screening on an individual basis

    Neural dynamics of motion integration and segmentation within and across apertures

    No full text
    A neural model is developed of how motion integration and segmentation processes both within and across apertures compute global motion percepts. Figure-ground properties, such as occlusion, influence which motion signals determine the percept. For visible apertures, a line's extrinsic terminators do not specify true line motion. For invisible apertures, a line's intrinsic terminators create veridical feature tracking signals. Sparse feature tracking signals can be amplified by directional filtering and competition, then integrated with ambiguous motion signals from line interiors, to determine the global percept. Filtered motion signals activate directional grouping and priming cells, which compete across space to select a winning direction, then feed back to boost consistent long-range filter activities and suppress inconsistent activities. Feedback can also attentionally prime a movement direction. This feedback process is predicted to occur between cortical areas MT and MST. Comput..

    Correspondence should be addressed to:

    No full text
    2. Acknowledgments: The authors wish to thank Diana Meyers for her valuable assistance in the preparation of the manuscript and figures.-1 A neural model is developed of how motion integration and segmentation processes, both within and across apertures, compute global motion percepts. Figure-ground properties, such as occlu-sion, influence which motion signals determine the percept. For visible apertures, a line’s termina-tors do not specify true line motion. For invisible apertures, a line’s intrinsic terminators create veridical feature tracking signals. Sparse feature tracking signals can be amplified before they propagate across position and are integrated with ambiguous motion signals within line interiors. This integration process determines the global percept. It is the result of several processing stages: Directional transient cells respond to image transients and input to a directional short-range filter that selectively boosts feature tracking signals with the help of competitive signals. Then a long-range filter inputs to directional cells that pool signals over multiple orientations, opposite con-trast polarities, and depths. This all happens no later than cortical area MT. The directional cell
    corecore