802 research outputs found

    Dynamical Properties of Quantum Spin Systems in Magnetically Ordered Product Ground States

    Get PDF
    The one‐dimensional spin‐s XYZmodel in a magnetic field of particular strength has a ferro‐ or antiferromagnetically ordered product ground state. The recursion method is employed to determine T=0 dynamic structure factors for systems with s=1/2, 1, 3/2. The line shapes and peak positions differ significantly from the corresponding spin‐wave results, but their development for increasing values of s suggests a smooth extrapolation to the spin‐wave picture

    Stable manifolds and homoclinic points near resonances in the restricted three-body problem

    Full text link
    The restricted three-body problem describes the motion of a massless particle under the influence of two primaries of masses 1μ1-\mu and μ\mu that circle each other with period equal to 2π2\pi. For small μ\mu, a resonant periodic motion of the massless particle in the rotating frame can be described by relatively prime integers pp and qq, if its period around the heavier primary is approximately 2πp/q2\pi p/q, and by its approximate eccentricity ee. We give a method for the formal development of the stable and unstable manifolds associated with these resonant motions. We prove the validity of this formal development and the existence of homoclinic points in the resonant region. In the study of the Kirkwood gaps in the asteroid belt, the separatrices of the averaged equations of the restricted three-body problem are commonly used to derive analytical approximations to the boundaries of the resonances. We use the unaveraged equations to find values of asteroid eccentricity below which these approximations will not hold for the Kirkwood gaps with q/pq/p equal to 2/1, 7/3, 5/2, 3/1, and 4/1. Another application is to the existence of asymmetric librations in the exterior resonances. We give values of asteroid eccentricity below which asymmetric librations will not exist for the 1/7, 1/6, 1/5, 1/4, 1/3, and 1/2 resonances for any μ\mu however small. But if the eccentricity exceeds these thresholds, asymmetric librations will exist for μ\mu small enough in the unaveraged restricted three-body problem

    Dimer and N\'eel order-parameter fluctuations in the spin-fluid phase of the s=1/2 spin chain with first and second neighbor couplings

    Full text link
    The dynamical properties at T=0 of the one-dimensional (1D) s=1/2 nearest-neighbor (nn) XXZ model with an additional isotropic next-nearest-neighbor (nnn) coupling are investigated by means of the recursion method in combination with techniques of continued-fraction analysis. The focus is on the dynamic structure factors S_{zz}(q,\omega) and S_{DD}(q,\omega), which describe (for q=\pi) the fluctuations of the N\'eel and dimer order parameters, respectively. We calculate (via weak-coupling continued-fraction analysis) the dependence on the exchange constants of the infrared exponent, the renormalized bandwidth of spinon excitations, and the spectral-weight distribution in S_{zz}(\pi,\omega) and S_{DD}(\pi,\omega), all in the spin-fluid phase, which is realized for planar nnnn anisotropy and sufficiently weak nnn coupling. For some parameter values we find a discrete branch of excitations above the spinon continuum. They contribute to S_{zz}(q,\omega) but not to S_{DD}(q,\omega).Comment: RevTex file (7 pages), 8 figures (uuencoded ps file) available from author

    COMPLETE SOLUTION OF THE XXZ-MODEL ON FINITE RINGS. DYNAMICAL STRUCTURE FACTORS AT ZERO TEMPERATURE.

    Full text link
    The finite size effects of the dynamical structure factors in the XXZ-model are studied in the euclidean time (τ)(\tau)-representation. Away from the critical momentum p=πp=\pi finite size effects turn out to be small except for the large τ\tau limit. The large finite size effects at the critical momentum p=πp=\pi signal the emergence of infrared singularities in the spectral (ω)(\omega)-representation of the dynamical structure factors.Comment: PostScript file with 12 pages + 11 figures uuencoded compresse

    Systematic Mapping of the Hubbard Model to the Generalized t-J Model

    Full text link
    The generalized t-J model conserving the number of double occupancies is constructed from the Hubbard model at and in the vicinity of half-filling at strong coupling. The construction is realized by a self-similar continuous unitary transformation. The flow equation is closed by a truncation scheme based on the spatial range of processes. We analyze the conditions under which the t-J model can be set up and we find that it can only be defined for sufficiently large interaction. There, the parameters of the effective model are determined.Comment: 16 pages, 13 figures included. v2: Order of sections changed. Calculation and discussion of apparent gap in Section IV.A correcte

    The effect of concentration of glycerol and electric current on the morphology and particle size of electrodeposited cadmium powder

    Get PDF
    Cadmium powder was obtained by electrodeposition of cadmium from glycerol and sulphuric acid. The morphology and particle size of these powders were studied. Broken dendrites, intermingled with spongy and irregular particles were observed in the powder. Around 60% of particles were below 100 µm. XRD studies showed that particles with sizes between 212.2 and 303.2 nm were present in the powder. The apparent density of cadmium powder decreased with increase in concentration of glycerol. The stability of the powder and current efficiency were also studie

    Continuous slice functional calculus in quaternionic Hilbert spaces

    Full text link
    The aim of this work is to define a continuous functional calculus in quaternionic Hilbert spaces, starting from basic issues regarding the notion of spherical spectrum of a normal operator. As properties of the spherical spectrum suggest, the class of continuous functions to consider in this setting is the one of slice quaternionic functions. Slice functions generalize the concept of slice regular function, which comprises power series with quaternionic coefficients on one side and that can be seen as an effective generalization to quaternions of holomorphic functions of one complex variable. The notion of slice function allows to introduce suitable classes of real, complex and quaternionic CC^*--algebras and to define, on each of these CC^*--algebras, a functional calculus for quaternionic normal operators. In particular, we establish several versions of the spectral map theorem. Some of the results are proved also for unbounded operators. However, the mentioned continuous functional calculi are defined only for bounded normal operators. Some comments on the physical significance of our work are included.Comment: 71 pages, some references added. Accepted for publication in Reviews in Mathematical Physic

    Electrowinning of Nickel from ammonical sulphate bath and effect of acetone on morphology of nickel deposit and its correlation with kinetic parameters

    Get PDF
    The electrodeposition of nickel from nickel sulphate bath was studied in ammonia medium. The electrolytic conditions for nickel deposition was optimized at room temperature. The effect of acetone on current efficiency, morphology, stability and particle size of deposited nickel powder was studied. The effect of organic additive Tribenzyl ammonium chloride (TBAC) on the morphology of nickel powder was also studied. The kinetics of electrodeposition was studied and the results were utilized in developing mathematical model. During electrodeposition the current efficiency was found to increase with increase in acetone concentration up to 15% V/V in bath solution. On further increase of acetone concentration in bath solution current efficiency decreases. The stability of the electrowon deposited nickel powder was found to be in the range of 85 to 89 %. Powder morphology was found to be dentritic, porous and irregular. The morphology was also found to be underdeveloped dentritic to rounded aggregate as the concentration of organic additive TBAC increases. The average particle size of the deposited powder was found to be decreasing as the concentration of the acetone increases. The average size of the particle is in the range of 13-16 m

    Constructive control of quantum systems using factorization of unitary operators

    Get PDF
    We demonstrate how structured decompositions of unitary operators can be employed to derive control schemes for finite-level quantum systems that require only sequences of simple control pulses such as square wave pulses with finite rise and decay times or Gaussian wavepackets. To illustrate the technique it is applied to find control schemes to achieve population transfers for pure-state systems, complete inversions of the ensemble populations for mixed-state systems, create arbitrary superposition states and optimize the ensemble average of dynamic observables.Comment: 28 pages, IoP LaTeX, principal author has moved to Cambridge University ([email protected]
    corecore