30 research outputs found

    Specific IgE Response to Purified and Recombinant Allergens in Latex Allergy

    Get PDF
    Background In recent years, allergy to natural rubber latex has emerged as a major allergy among certain occupational groups and patients with underlying diseases. The sensitization and development of latex allergy has been attributed to exposure to products containing residual latex proteins. Although improved manufacturing procedures resulted in a considerable reduction of new cases, the potential risk for some patient groups is still great. In addition the prevalent cross-reactivity of latex proteins with other food allergens poses a major concern. A number of purified allergens and a few commercial kits are currently available, but no concerted effort was undertaken to evaluate them. Methods We studied 11 purified latex allergens, Hev b 1 to Hev b 10, and Hev b 13 along with several crude allergen extracts and two commercial ImmunoCAP assays to evaluate specific IgE antibody in the sera from latex allergic patients and controls. Health care workers and spina bifida patients with clinical symptoms of latex allergy, spina bifida patients without latex allergy, and non-atopic health care workers have been studied. Results The results suggest that Hev b 2, 5, 6, and 13 together identified over 80 percent health care workers with latex allergy, while Hev b 6 along with Hev b 1 or 3 detected specific IgE antibody in all sera studied from patients with spina bifida and latex allergy. The ImmunoCAP results using both Hev b 5 amplified and non-amplified closely agreed with the clinical diagnosis of latex allergy in health care workers and in spina bifida. Conclusion Although the purified allergens and crude extracts reacted diversely with IgE from different patient groups, the results indicated that use of certain combinations of purified recombinant antigens will be useful in commercial kits or in in-house assays for detecting specific IgE antibody in the sera. The results suggest that a combination of Hev b 2, 3, 5, 6, and 13 together detected specific IgE in 80% of the sera from latex allergic patients. Both ImmunoCAPs correctly identified over 95% of latex allergic patients, however, showed reactivity with a few normal control subject

    Second-Hand Smoke Increases Bronchial Hyperreactivity and Eosinophilia in a Murine Model of Allergic Aspergillosis

    Get PDF
    Involuntary inhalation of tobacco smoke has been shown to aggravate the allergic response. Antibodies to fungal antigens such as Aspergillus fumigatus (Af) cause an allergic lung disease in humans. This study was carried out to determine the effect of environmental tobacco smoke (ETS) on a murine model of allergic bronchopulmonary aspergillosis (ABPA). BALB/c mice were exposed to aged and diluted sidestream cigarette smoke to simulate 'second-hand smoke'. The concentration was consistent with that achieved in enclosed public areas or households where multiple people smoke. During exposure, mice were sensitized to Af antigen intranasally. Mice that were sensitized to Af antigen and exposed to ETS developed significantly greater airway hyperreactivity than did mice similarly sensitized to Af but housed in ambient air. The effective concentration of aerosolized acetylcholine needed to double pulmonary flow resistance was significantly lower in Af + ETS mice compared to the Af + AIR mice. Immunological data that supports this exacerbation of airway hyperresponsiveness being mediated by an enhanced type 1 hypersensitivity response include: eosinophilia in peripheral blood and lung sections. All Af sensitized mice produced elevated levels of IL4, IL5 and IL10 but no IFN-Îł indicating a polarized Th2 response. Thus, ETS can cause exacerbation of asthma in ABPA as demonstrated by functional airway hyperresponsiveness and elevated levels of blood eosinophilia

    Immune response modulation by curcumin in a latex allergy model

    Get PDF
    BACKGROUND: There has been a worldwide increase in allergy and asthma over the last few decades, particularly in industrially developed nations. This resulted in a renewed interest to understand the pathogenesis of allergy in recent years. The progress made in the pathogenesis of allergic disease has led to the exploration of novel alternative therapies, which include herbal medicines as well. Curcumin, present in turmeric, a frequently used spice in Asia has been shown to have anti-allergic and inflammatory potential. METHODS: We used a murine model of latex allergy to investigate the role of curcumin as an immunomodulator. BALB/c mice were exposed to latex allergens and developed latex allergy with a Th2 type of immune response. These animals were treated with curcumin and the immunological and inflammatory responses were evaluated. RESULTS: Animals exposed to latex showed enhanced serum IgE, latex specific IgG(1), IL-4, IL-5, IL-13, eosinophils and inflammation in the lungs. Intragastric treatment of latex-sensitized mice with curcumin demonstrated a diminished Th2 response with a concurrent reduction in lung inflammation. Eosinophilia in curcumin-treated mice was markedly reduced, co-stimulatory molecule expression (CD80, CD86, and OX40L) on antigen-presenting cells was decreased, and expression of MMP-9, OAT, and TSLP genes was also attenuated. CONCLUSION: These results suggest that curcumin has potential therapeutic value for controlling allergic responses resulting from exposure to allergens

    Profile of Gene Expression in a Murine Model of Allergic Bronchopulmonary Aspergillosis

    No full text
    Allergic bronchopulmonary aspergillosis (ABPA) results from the interactions of the Aspergillus allergens and immune system of the patients. We studied the gene expression profile in a mouse model of ABPA. Of the 12,000 genes studied, 1,300 genes showed enhanced expression and represent chemokine, cytokine, growth factor, signal transduction, and transmembrane receptor genes as well as genes related to arginine metabolism
    corecore