9,819 research outputs found

    Thin-shell wormholes: Linearization stability

    Full text link
    The class of spherically-symmetric thin-shell wormholes provides a particularly elegant collection of exemplars for the study of traversable Lorentzian wormholes. In the present paper we consider linearized (spherically symmetric) perturbations around some assumed static solution of the Einstein field equations. This permits us to relate stability issues to the (linearized) equation of state of the exotic matter which is located at the wormhole throat.Comment: 4 pages; ReV_TeX 3.0; one postscript figur

    Cylindrically symmetric wormholes

    Full text link
    This paper discusses traversable wormholes that differ slightly but significantly from those of the Morris-Thorne type under the assumption of cylindrical symmetry. The throat is a piecewise smooth cylindrical surface resulting in a shape function that is not differentiable at some value. It is proposed that the regular derivative be replaced by a one-sided derivative at this value. The resulting wormhole geometry satisfies the weak energy condition.Comment: Supplied missing figures; 15 pages AMSTe

    On arithmetic detection of grey pulses with application to Hawking radiation

    Full text link
    Micron-sized black holes do not necessarily have a constant horizon temperature distribution. The black hole remote-sensing problem means to find out the `surface' temperature distribution of a small black hole from the spectral measurement of its (Hawking) grey pulse. This problem has been previously considered by Rosu, who used Chen's modified Moebius inverse transform. Here, we hint on a Ramanujan generalization of Chen's modified Moebius inverse transform that may be considered as a special wavelet processing of the remote-sensed grey signal coming from a black hole or any other distant grey sourceComment: 5 pages, published versio

    Cylindrical thin-shell wormholes and energy conditions

    Full text link
    We prove the impossibility of cylindrical thin-shell wormholes supported by matter satisfying the energy conditions everywhere, under reasonable assumptions about the asymptotic behaviour of the - in general different - metrics at each side of the throat. In particular, we reproduce for singular sources previous results corresponding to flat and conical asymptotics, and extend them to a more general asymptotic behaviour. Besides, we establish necessary conditions for the possibility of non exotic cylindrical thin-shell wormholes.Comment: 9 pages; slightly improved version of the article accepted in Int. J. Mod. Phys.

    Lookback time bounds from energy conditions

    Full text link
    In general relativity, the energy conditions are invoked to restrict general energy-momentum tensors on physical grounds. We show that in the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) approach to cosmological modeling, where the energy and matter components of the cosmic fluid are unknown, the energy conditions provide model-independent bounds on the behavior of the lookback time of cosmic sources as a function of the redshift for any value of the spatial curvature. We also confront such bounds with a lookback time sample which is built from the age estimates of 32 galaxies lying in the interval 0.11â‰Čzâ‰Č1.840.11 \lesssim z \lesssim 1.84 and by assuming the total expanding age of the Universe to be 13.7±0.213.7 \pm 0.2 Gyr, as obtained from current cosmic microwave background experiments. In agreement with previous results, we show that all energy conditions seem to have been violated at some point of the recent past of cosmic evolution.Comment: 7 pages, 3 figures. v2: Minor changes, published in Phys.Rev.D in the present for

    Gravitational vacuum polarization III: Energy conditions in the (1+1) Schwarzschild spacetime

    Full text link
    Building on a pair of earlier papers, I investigate the various point-wise and averaged energy conditions for the quantum stress-energy tensor corresponding to a conformally-coupled massless scalar field in the in the (1+1)-dimensional Schwarzschild spacetime. Because the stress-energy tensors are analytically known, I can get exact results for the Hartle--Hawking, Boulware, and Unruh vacua. This exactly solvable model serves as a useful sanity check on my (3+1)-dimensional investigations wherein I had to resort to a mixture of analytic approximations and numerical techniques. Key results in (1+1) dimensions are: (1) NEC is satisfied outside the event horizon for the Hartle--Hawking vacuum, and violated for the Boulware and Unruh vacua. (2) DEC is violated everywhere in the spacetime (for any quantum state, not just the standard vacuum states).Comment: 7 pages, ReV_Te

    Energy Conditions and Cosmic Acceleration

    Get PDF
    In general relativity, the energy conditions are invoked to restrict general energy-momentum tensors TΌΜT_{\mu\nu} in different frameworks, and to derive general results that hold in a variety of general contexts on physical grounds. We show that in the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) approach, where the equation of state of the cosmological fluid is unknown, the energy conditions provide model-independent bounds on the behavior of the distance modulus of cosmic sources as a function of the redshift for any spatial curvature. We use the most recent type Ia supernovae (SNe Ia) observations, which include the new Hubble Space Telescope SNe Ia events, to carry out a model-independent analysis of the energy conditions violation in the context of the standard cosmology. We show that both the null (NEC), weak (WEC) and dominant (DEC) conditions, which are associated with the existence of the so-called phantom fields, seem to have been violated only recently (zâ‰Č0.2z \lesssim 0.2), whereas the condition for attractive gravity, i.e., the strong energy condition (SEC) was firstly violated billions of years ago, at z≳1z \gtrsim 1.Comment: 6 pages, 3 figures. v2: References added, misprints corrected, published in Phys.Rev.D in the present for

    Radiation from collapsing shells, semiclassical backreaction and black hole formation

    Full text link
    We provide a detailed analysis of quantum field theory around a collapsing shell and discuss several conceptual issues related to the emission of radiation flux and formation of black holes. Explicit calculations are performed using a model for a collapsing shell which turns out to be analytically solvable. We use the insights gained in this model to draw reliable conclusions regarding more realistic models. We first show that any shell of mass MM which collapses to a radius close to r=2Mr=2M will emit approximately thermal radiation for a period of time. In particular, a shell which collapses from some initial radius to a final radius 2M(1−ϔ2)−12M(1-\epsilon^2)^{-1} (where Ï”â‰Ș1\epsilon \ll 1) without forming a black hole, will emit thermal radiation during the period Mâ‰Čtâ‰ČMln⁥(1/Ï”2)M\lesssim t \lesssim M\ln (1/\epsilon^2). Later on (t≫Mln⁥(1/Ï”2)t\gg M \ln(1/\epsilon^2)), the flux from such a shell will decay to zero exponentially. We next study the effect of backreaction computed using the vacuum expectation value of the stress tensor on the collapse. We find that, in any realistic collapse scenario, the backreaction effects do \emph{not} prevent the formation of the event horizon. The time at which the event horizon is formed is, of course, delayed due to the radiated flux -- which decreases the mass of the shell -- but this effect is not sufficient to prevent horizon formation. We also clarify several conceptual issues and provide pedagogical details of the calculations in the Appendices to the paper.Comment: 26 pages, 6 figures, revtex4; v2 -- minor reformatting, some typos fixed, one reference added, to appear in PR

    Gravitational vacuum polarization IV: Energy conditions in the Unruh vacuum

    Full text link
    Building on a series of earlier papers [gr-qc/9604007, gr-qc/9604008, gr-qc/9604009], I investigate the various point-wise and averaged energy conditions in the Unruh vacuum. I consider the quantum stress-energy tensor corresponding to a conformally coupled massless scalar field, work in the test-field limit, restrict attention to the Schwarzschild geometry, and invoke a mixture of analytical and numerical techniques. I construct a semi-analytic model for the stress-energy tensor that globally reproduces all known numerical results to within 0.8%, and satisfies all known analytic features of the stress-energy tensor. I show that in the Unruh vacuum (1) all standard point-wise energy conditions are violated throughout the exterior region--all the way from spatial infinity down to the event horizon, and (2) the averaged null energy condition is violated on all outgoing radial null geodesics. In a pair of appendices I indicate general strategy for constructing semi-analytic models for the stress-energy tensor in the Hartle-Hawking and Boulware states, and show that the Page approximation is in a certain sense the minimal ansatz compatible with general properties of the stress-energy in the Hartle-Hawking state.Comment: 40 pages; plain LaTeX; uses epsf.sty (ten encapsulated postscript figures); two tables (table and tabular environments). Should successfully compile under both LaTeX 209 and the 209 compatibility mode of LaTeX2
    • 

    corecore