20 research outputs found

    Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers

    Get PDF
    Coastal zones of Antarctica harbor rich but highly variable phytoplankton communities. The mechanisms that control the dynamics of these communities are not well defined. Here we elucidate the mechanisms that drive seasonal species succession, based on algal photophysiological characteristics and environmental factors. For this, phytoplankton community structure together with oceanographic parameters was studied over a 5‐year period (2012–2017) at Rothera Station at Ryder Bay (Western Antarctic Peninsula). Algal pigment patterns and photophysiological studies based on fluorescence analyses were combined with data from the Rothera Time‐Series program. Considerable interannual variation was observed, related to variations in wind‐mixing, ice cover and an El Niño event. Clear patterns in the succession of algal classes became manifest when combining the data collected over the five successive years. In spring, autotrophic flagellates with a high light affinity were the first to profit from increasing light and sea ice melt. These algae most likely originated from sea‐ice communities, stressing the role of sea ice as a seeding vector for the spring bloom. Diatoms became dominant towards summer in more stratified and warmer surface waters. These communities displayed significantly lower photoflexibility than spring communities. There are strong indications for mixotrophy in cryptophytes, which would explain much of their apparently random occurrence. Climate models predict continuing retreat of Antarctic sea‐ice during the course of this century. For the near‐future we predict that the marginal sea‐ice zone will still harbor significant communities of haptophytes and chlorophytes, whereas increasing temperatures will mainly be beneficial for diatoms

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Can photoinhibition control phytoplankton abundance in deeply mixed water columns of the Southern Ocean?

    Get PDF
    To study how natural Southern Ocean phytoplankton communities acclimate to rapid fluctuations in irradiance levels that result from deep wind-driven mixing of the upper water column, we measured their fluorescence properties (Fv:Fm, maximum quantum yield of photosystem II; and qN, non-photochemical quenching) and pigment composition. Values of Fv:Fm were low (< 0.46) and qN was high (> 0.67) throughout the upper mixed layer (UML). Short-term (20-min) exposure to incident surface irradiance strongly reduced Fv:Fm and recovery was slow under subsequent incubation at low irradiance. This suggests that phytoplankton cells are frequently photodamaged when mixed up to the surface from depth. Recovery of Fv:Fm was suppressed when lincomycin was added, inhibiting synthesis of the photosystem II reaction center D1 protein. This indicates that D1 protein repair is crucial in maintaining photosynthetic performance under fluctuating irradiance levels. Regions within the Antarctic Circumpolar Current (ACC) with a deep UML had lower depth-integrated phytoplankton biomass than regions close to the Antarctic continent with a shallow UML. Surprisingly, the depth-averaged light level within the UML in these latter regions was lower than in the ACC. Thus, it appears that photodamage incurred during the high irradiance portion of the vertical mixing cycle, rather than light limitation, controls phytoplankton growth in regions of the Southern Ocean with a deep UML. This concept represents a shift from the widely accepted paradigm that phytoplankton growth in the open Southern Ocean is limited by low levels of light or inadequate iron supply.

    Interactions between Ethylene and Gibberellins in Phytochrome-Mediated Shade Avoidance Responses in Tobacco

    Get PDF
    Plants respond to proximate neighbors with a suite of responses that comprise the shade avoidance syndrome. These phytochrome-mediated responses include hyponasty (i.e. a more vertical orientation of leaves) and enhanced stem and petiole elongation. We showed recently that ethylene-insensitive tobacco (Nicotiana tabacum) plants (Tetr) have reduced responses to neighbors, showing an important role for this gaseous plant hormone in shade avoidance. Here, we investigate interactions between phytochrome signaling and ethylene action in shade avoidance responses. Furthermore, we investigate if ethylene acts in these responses through an interaction with the GA class of hormones. Low red to far-red light ratios (R:FR) enhanced ethylene production in wild-type tobacco, resulting in shade avoidance responses, whereas ethylene-insensitive plants showed reduced shade avoidance responses. Plants with inhibited GA production showed hardly any shade avoidance responses at all to either a low R:FR or increased ethylene concentrations. Furthermore, low R:FR enhanced the responsiveness of hyponasty and stem elongation in both wild-type and Tetr plants to applied GA(3), with the stem elongation process being more responsive to GA(3) in the wild type than in Tetr. We conclude that phytochrome-mediated shade avoidance responses involve ethylene action, at least partly by modulating GA action

    Solar radiation and solar radiation driven cycles in warming and freshwater discharge control seasonal and inter-annual phytoplankton chlorophyll a and taxonomic composition in a high Arctic fjord (Kongsfjorden, Spitsbergen)

    Get PDF
    Fjords on the west coast of Spitsbergen experience variable Arctic and Atlantic climate signals that drive seasonal and inter-annual variability of phytoplankton productivity and composition, by mechanisms that are not fully resolved. To this end, a time series (2013–2018) of Kongsfjorden (N 78°54.2, E 11°54.0) phytoplankton pigments, ocean physics, nutrient concentrations, and microbial abundances was investigated. Kongsfjorden phytoplankton dynamics were predominantly governed by solar radiation and cycles of warming and freshwater discharge that caused pronounced changes in light and nutrient availability. Phytoplankton growth after the polar night commenced in March in a mixed, nutrient loaded water column, and accelerated in April after weak thermal stratification. Spring (weeks 10–22) showed high diatom relative abundance that ceased when silicic acid and nitrate reached limiting concentrations. Summer (weeks 23–35) was characterized by sixfold stronger stratification due to increased freshwater discharge and continued ocean heating. This caused a warm, low salinity surface layer with low nutrient concentrations. Small and diverse flagellates, together with high bacterial and viral abundances, thrived in this regenerative, N or P-limited system. Elevated late summer chlorophyll a (Chl a), and ammonium suggested increased regeneration and nutrient pulses by glacial upwelling. Fall (weeks 36–48) caused rapidly declining Chl a and increasing diatom relative abundance, which persisted throughout the polar night, causing high diatom relative abundance during spring. Despite inter-annual variability in ocean temperature and salinity we observed relatively stable seasonal phytoplankton taxonomic composition and Chl a

    Dataset: Chemical and biological water column characteristics in June 2015 in Kongsfjorden (Spitsbergen)

    No full text
    Nutrient concentrations (phosphate, ammonium, nitrate plus nitrite, silicate), abundance of phytoplankton taxonomic groups calculated by CHEMTAX (prasinophytes, dinoflagellates, cryptophytes, chrysophytes, and haptophytes), and chlorophyll-a concentration in the upper 50 m of the water column at two locations in Kongsfjorden, Spitsbergen, during June 2015. Median Latitude: 78.925683, Median Longitude: 12.197150, South-bound Latitude: 78.905717, West-bound Longitude: 12.018817, North-bound Latitude: 78.945650, East-bound Longitude: 12.37548

    Dataset: Physical, chemical, and biological water column characteristics in June 2015 in Kongsfjorden

    No full text
    Glacial meltwater discharge in fjords on the west coast of Spitsbergen is increasing due to climate change. The influence of this discharge on phytoplankton nutrient limitation, composition, productivity and photophysiology was investigated in central (M) and inner (G) Kongsfjorden (79°N, 11°40'E). Freshwater influx intensified stratification during June 2015, coinciding with surface nutrient depletion. Surface nutrient concentrations were negatively correlated with stratification strength at station M. Here, nitrate addition assays revealed increasing N limitation of surface phytoplankton during the second half of June, which was followed by a pronounced compositional change within the flagellate-dominated phytoplankton community as dictyochophytes (85% of chl a) were replaced with smaller haptophytes (up to 60% of chlorophyll a) and prasinophytes (20% of chlorophyll a). These changes were less pronounced at station G, where surface phosphate, ammonium and nitrate concentrations were occasionally higher, and correlated with wind direction, suggesting wind-mediated transport of nutrient-enriched waters to this inner location. Therefore, glacial meltwater discharge mediated nutrient enrichment in the inner fjord, and enhanced stratification in inner and central Kongsfjorden. Surface chlorophyll a and water column productivity showed 3–4-fold variability, and did not correlate with nutrient limitation, euphotic zone depth, or changed taxonomic composition. However, the maximum carbon fixation rate and photosynthetic efficiency showed weak positive correlations to prasinophyte, cryptophyte, and haptophyte chlorophyll a. The present study documented relationships between stratification, N limitation, and changed phytoplankton composition, but surface chlorophyll a concentration, phytoplankton photosynthetic characteristics, and water column productivity in Kongsfjorden appeared to be driven by mechanisms other than N limitation

    Dataset: Physical water column characteristics in June 2015 in Kongsfjorden (Spitsbergen)

    No full text
    Data to: Contrasting glacial meltwater effects on post-bloom phytoplankton on temporal and spatial scales in Kongsfjorden, Spitsbergen. Elementa - Science of the Anthropocene, 6(1), 50, https://doi.org/10.1525/elementa.307 Data contains: Temperature, salinity, photosynthetic active radiation, chlorophyll fluorescence, turbidity, and density profiles of the upper 100 m of the water column at two locations in Kongsfjorden, Spitsbergen, during June 2015, measured by CTD. 9630 data point
    corecore