10,567 research outputs found

    Tolman mass, generalized surface gravity, and entropy bounds

    Full text link
    In any static spacetime the quasi-local Tolman mass contained within a volume can be reduced to a Gauss-like surface integral involving the flux of a suitably defined generalized surface gravity. By introducing some basic thermodynamics and invoking the Unruh effect one can then develop elementary bounds on the quasi-local entropy that are very similar in spirit to the holographic bound, and closely related to entanglement entropy.Comment: V1: 4 pages. Uses revtex4-1; V2: Three references added; V3: Some notational changes for clarity; introductory paragraph rewritten; no physics changes. This version accepted for publication in Physical Review Letter

    An analytical decomposition protocol for optimal implementation of two-qubit entangling gates

    Full text link
    This paper addresses the question how to implement a desired two-qubit gate U using a given tunable two-qubit entangling interaction H_int. We present a general method which is based on the K_1 A K_2 decomposition of unitary matrices in SU(4) to calculate analytically the smallest number of two-qubit gates U_int [based on H_int] and single-qubit rotations, and the explicit sequence of these operations that are required to implement U. We illustrate our protocol by calculating the implementation of (1) the transformation from standard basis to Bell basis, (2) the CNOT gate, and (3) the quantum Fourier transform for two kinds of interaction - Heisenberg exchange interaction and quantum inductive coupling - and discuss the relevance of our results for solid-state qubits.Comment: 16 pages, published versio

    Geometric structure of the generic static traversable wormhole throat

    Get PDF
    Traversable wormholes have traditionally been viewed as intrinsically topological entities in some multiply connected spacetime. Here, we show that topology is too limited a tool to accurately characterize a generic traversable wormhole: in general one needs geometric information to detect the presence of a wormhole, or more precisely to locate the wormhole throat. For an arbitrary static spacetime we shall define the wormhole throat in terms of a 2-dimensional constant-time hypersurface of minimal area. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at the wormhole throat and to derive generalized theorems regarding violations of the energy conditions-theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the spherically symmetric Morris-Thorne traversable wormhole. [For example: the null energy condition (NEC), when suitably weighted and integrated over the wormhole throat, must be violated.] The major technical limitation of the current approach is that we work in a static spacetime-this is already a quite rich and complicated system.Comment: 25 pages; plain LaTeX; uses epsf.sty (four encapsulated postscript figures

    Cosmodynamics: Energy conditions, Hubble bounds, density bounds, time and distance bounds

    Full text link
    We refine and extend a programme initiated by one of the current authors [Science 276 (1997) 88; Phys. Rev. D56 (1997) 7578] advocating the use of the classical energy conditions of general relativity in a cosmological setting to place very general bounds on various cosmological parameters. We show how the energy conditions can be used to bound the Hubble parameter H(z), Omega parameter Omega(z), density rho(z), distance d(z), and lookback time T(z) as (relatively) simple functions of the redshift z, present-epoch Hubble parameter H_0, and present-epoch Omega parameter Omega_0. We compare these results with related observations in the literature, and confront the bounds with the recent supernova data.Comment: 21 pages, 2 figure

    Gravitational vacuum polarization III: Energy conditions in the (1+1) Schwarzschild spacetime

    Full text link
    Building on a pair of earlier papers, I investigate the various point-wise and averaged energy conditions for the quantum stress-energy tensor corresponding to a conformally-coupled massless scalar field in the in the (1+1)-dimensional Schwarzschild spacetime. Because the stress-energy tensors are analytically known, I can get exact results for the Hartle--Hawking, Boulware, and Unruh vacua. This exactly solvable model serves as a useful sanity check on my (3+1)-dimensional investigations wherein I had to resort to a mixture of analytic approximations and numerical techniques. Key results in (1+1) dimensions are: (1) NEC is satisfied outside the event horizon for the Hartle--Hawking vacuum, and violated for the Boulware and Unruh vacua. (2) DEC is violated everywhere in the spacetime (for any quantum state, not just the standard vacuum states).Comment: 7 pages, ReV_Te

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision

    Tolman wormholes violate the strong energy condition

    Get PDF
    For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define the bounce in terms of a three-dimensional edgeless achronal spacelike hypersurface of minimal volume. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at and near the bounce and to derive general theorems regarding violations of the energy conditions--theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the highly symmetric FRW-based subclass of Tolman wormholes. [For example: even under the mildest of hypotheses, the strong energy condition (SEC) must be violated.] Alternatively, one can dispense with the minimal volume condition and define a generic bounce entirely in terms of the motion of test particles (future-pointing timelike geodesics), by looking at the expansion of their timelike geodesic congruences. One re-confirms that the SEC must be violated at or near the bounce. In contrast, it is easy to arrange for all the other standard energy conditions to be satisfied.Comment: 8 pages, ReV-TeX 3.

    Effective 4D propagation of a charged scalar particle in Visser brane world

    Full text link
    In this work we extend an analysis due to Visser of the effective propagation of a neutral scalar particle on a brane world scenario which is a particular solution of the five dimensional Einstein-Maxwell equations with cosmological constant having an electric field pointing in the extra spatial dimension. We determine the dispersion relations of a charged scalar particle to first order in a perturbative analysis around those of the neutral particle. Since depending on whether the particle is charged or not the dispersion relations change, we could collect bulk information, namely the presence of the electric field, by studying the 4D dynamics of the particles.Comment: 12 pages, 5 figure

    Effective refractive index tensor for weak field gravity

    Full text link
    Gravitational lensing in a weak but otherwise arbitrary gravitational field can be described in terms of a 3 x 3 tensor, the "effective refractive index". If the sources generating the gravitational field all have small internal fluxes, stresses, and pressures, then this tensor is automatically isotropic and the "effective refractive index" is simply a scalar that can be determined in terms of a classic result involving the Newtonian gravitational potential. In contrast if anisotropic stresses are ever important then the gravitational field acts similarly to an anisotropic crystal. We derive simple formulae for the refractive index tensor, and indicate some situations in which this will be important.Comment: V1: 8 pages, no figures, uses iopart.cls. V2: 13 pages, no figures. Significant additions and clarifications. This version to appear in Classical and Quantum Gravit
    • …
    corecore