99 research outputs found

    YIOOP! INTRODUCING AUTOSUGGEST AND SPELL CHECK

    Get PDF
    This project adds autosuggest and spell-check for queries in Yioop [1], a PHP- based search engine. These features help a user by reducing typing, by catching any spelling errors, and by making it easier to repeat searches. Commercial search engines like Google, run on machine clusters and use lists of popular queries from their logs to provide relevant suggestions to users. Efficient storage of data on multiple servers is responsible for minimizing response times. Yioop typically runs on a smaller number of machines compared to commercial search engines. This project aims to implement these computationally intensive functionalities in this constrained environment. This is achieved by performing any needed processing on the client-side without sending queries to the Yioop server

    On the Energetics of the HCO+^+ + C \to CH+^+ + CO Reaction and Some Astrochemical Implications

    Get PDF
    We explore the energetics of the titular reaction, which current astrochemical databases consider open at typical dense molecular (i.e., dark) cloud conditions. As is common for reactions involving the transfer of light particles, we assume that there are no intersystem crossings of the potential energy surfaces involved. In the absence of any such crossings, we find that this reaction is endoergic and will be suppressed at dark cloud temperatures. Updating accordingly a generic astrochemical model for dark clouds changes the predicted gas-phase abundances of 224 species by greater than a factor of 2. Of these species, 43 have been observed in the interstellar medium. Our findings demonstrate the astrochemical importance of determining the role of intersystem crossings, if any, in the titular reaction.Comment: Accepted for publication in ApJ; 14 pages, 2 figures, and 1 tabl

    Exploring Whether Super-puffs can be Explained as Ringed Exoplanets

    Get PDF
    An intriguing, growing class of planets are the "super-puffs," objects with exceptionally large radii for their masses and thus correspondingly low densities (≾0.3 g cm⁻³). Here we consider whether they could have large inferred radii because they are in fact ringed. This would naturally explain why super-puffs have thus far only shown featureless transit spectra. We find that this hypothesis can work in some cases but not all. The close proximity of the super-puffs to their parent stars necessitates rings with a rocky rather than icy composition. This limits the radius of the rings, and makes it challenging to explain the large size of Kepler 51b, 51c, 51d, and 79d unless the rings are composed of porous material. Furthermore, the short tidal locking timescales for Kepler 18d, 223d, and 223e mean that these planets may be spinning too slowly, resulting in a small oblateness and rings that are warped by their parent star. Kepler 87c and 177c have the best chance of being explained by rings. Using transit simulations, we show that testing this hypothesis requires photometry with a precision of somewhere between ~10 ppm and ~50 ppm, which roughly scales with the ratio of the planet and star's radii. We conclude with a note about the recently discovered super-puff HIP 41378f

    Recommended Thermal Rate Coefficients for the C + H3+_3^+ Reaction and Some Astrochemical Implications

    Get PDF
    We have incorporated our experimentally derived thermal rate coefficients for C + H3+_3^+ forming CH+^+ and CH2+_2^+ into a commonly used astrochemical model. We find that the Arrhenius-Kooij equation typically used in chemical models does not accurately fit our data and use instead a more versatile fitting formula. At a temperature of 10 K and a density of 104^4 cm3^{-3}, we find no significant differences in the predicted chemical abundances, but at higher temperatures of 50, 100, and 300 K we find up to factor of 2 changes. Additionally, we find that the relatively small error on our thermal rate coefficients, 15%\sim15\%, significantly reduces the uncertainties on the predicted abundances compared to those obtained using the currently implemented Langevin rate coefficient with its estimated factor of 2 uncertainty.Comment: 19 pages, 5 figures. Accepted for publication in Ap

    Merged-beams Reaction Studies of O + H_3^+

    Get PDF
    We have measured the reaction of O + H3+ forming OH+ and H2O+. This is one of the key gas-phase astrochemical processes initiating the formation of water molecules in dense molecular clouds. For this work, we have used a novel merged fast-beams apparatus which overlaps a beam of H3+ onto a beam of ground-term neutral O. Here, we present cross section data for forming OH+ and H2O+ at relative energies from \approx 3.5 meV to \approx 15.5 and 0.13 eV, respectively. Measurements were performed for statistically populated O(3PJ) in the ground term reacting with hot H3+ (with an internal temperature of \approx 2500-3000 K). From these data, we have derived rate coefficients for translational temperatures from \approx 25 K to \approx 10^5 and 10^3 K, respectively. Using state-of-the-art theoretical methods as a guide, we have converted these results to a thermal rate coefficient for forming either OH+ or H2O+, thereby accounting for the temperature dependence of the O fine-structure levels. Our results are in good agreement with two independent flowing afterglow measurements at a temperature of \approx 300 K, and with a corresponding level of H3+ internal excitation. This good agreement strongly suggests that the internal excitation of the H3+ does not play a significant role in this reaction. The Langevin rate coefficient is in reasonable agreement with the experimental results at 10 K but a factor of \approx 2 larger at 300 K. The two published classical trajectory studies using quantum mechanical potential energy surfaces lie a factor of \approx 1.5 above our experimental results over this 10-300 K range.Comment: 43 pages, 11 figures. Submitted to the Astrophysical Journa

    Observing atmospheric escape in sub-Jovian worlds with JWST

    Full text link
    Hydrodynamic atmospheric escape is considered an important process that shapes the evolution of sub-Jovian exoplanets, particularly those with short orbital periods. The metastable He line in the near-infrared at 1.0831.083 μ\mum is a reliable tracer of atmospheric escape in hot exoplanets, with the advantage of being observable from the ground. However, observing escaping He in sub-Jovian planets has remained challenging due to the systematic effects and telluric contamination present in ground-based data. With the successful launch and operations of JWST, we now have access to extremely stable high-precision near-infrared spectrographs in space. Here we predict the observability of metastable He with JWST in two representative and previously well-studied warm Neptunes, GJ 436 b (Teq=687 KT_{\rm eq} = 687~{\rm K}, Rp=0.37 RJR_{\rm p} = 0.37~{\rm R_J}) and GJ 1214 b (Teq=588 KT_{\rm eq} = 588~{\rm K}, Rp=0.25 RJR_{\rm p} = 0.25~{\rm R_J}). Our simulated JWST observations for GJ 436 b demonstrate that a single transit with NIRSpec/G140H is sensitive to mass loss rates that are two orders of magnitude lower than what is detectable from the ground. Our exercise for GJ 1214 b show that the best configuration to observe the relatively weak outflows of warm Neptunes with JWST is with NIRSpec/G140H, and that NIRSpec/G140M and NIRISS/SOSS are less optimal. Since none of these instrument configurations can spectrally resolve the planetary absorption, we conclude that the 1D isothermal Parker-wind approximation may not be sufficient for interpreting such observations. More sophisticated models are critical for breaking the degeneracy between outflow temperature and mass-loss rate for JWST measurements of metastable He.Comment: 14 pages, 7 figures, under review at AAS Journals; this version follows the first round of revision. Feedback from the community is welcom

    Constraints on Metastable Helium in the Atmospheres of WASP-69b and WASP-52b with Ultra-Narrowband Photometry

    Get PDF
    Infrared observations of metastable 23^3S helium absorption with ground- and space-based spectroscopy are rapidly maturing, as this species is a unique probe of exoplanet atmospheres. Specifically, the transit depth in the triplet feature (with vacuum wavelengths near 1083.3 nm) can be used to constrain the temperature and mass loss rate of an exoplanet's upper atmosphere. Here, we present a new photometric technique to measure metastable 23^3S helium absorption using an ultra-narrowband filter (full-width at half-maximum of 0.635 nm) coupled to a beam-shaping diffuser installed in the Wide-field Infrared Camera (WIRC) on the 200-inch Hale Telescope at Palomar Observatory. We use telluric OH lines and a helium arc lamp to characterize refractive effects through the filter and to confirm our understanding of the filter transmission profile. We benchmark our new technique by observing a transit of WASP-69b and detect an excess absorption of 0.498±0.0450.498\pm0.045% (11.1σ\sigma), consistent with previous measurements after considering our bandpass. Then, we use this method to study the inflated gas giant WASP-52b and place a 95th-percentile upper limit on excess absorption in our helium bandpass of 0.47%. Using an atmospheric escape model, we constrain the mass loss rate for WASP-69b to be 5.250.46+0.65×104 MJ/Gyr5.25^{+0.65}_{-0.46}\times10^{-4}~M_\mathrm{J}/\mathrm{Gyr} (3.320.56+0.67×103 MJ/Gyr3.32^{+0.67}_{-0.56}\times10^{-3}~M_\mathrm{J}/\mathrm{Gyr}) at 7,000 K (12,000 K). Additionally, we set an upper limit on the mass loss rate of WASP-52b at these temperatures of 2.1×104 MJ/Gyr2.1\times10^{-4}~M_\mathrm{J}/\mathrm{Gyr} (2.1×103 MJ/Gyr2.1\times10^{-3}~M_\mathrm{J}/\mathrm{Gyr}). These results show that ultra-narrowband photometry can reliably quantify absorption in the metastable helium feature.Comment: 17 pages, 8 figures (figures 1 and 2 are rasterized for arXiv file size compliance), accepted to A
    corecore