6 research outputs found

    Solophos fertilizer improved rice plant growth in aerobic soil

    Get PDF
    Yield decline of continuous monocropping of aerobic rice is the major constraint to the wide adoption of aerobic rice technology. This study was conducted to determine if solophos fertilizer could be used to reverse the yield decline of this cropping system using pot and micro-plot experiments. The soil for the pot experiment was collected from a field where aerobic rice has been grown continuously for 11 seasons at the IRRI farm. Four rates (4, 6, 8, and 10gpot^) of solophos application were used in the pot experiment. Micro-plots (1×1m) were installed in the field experiment where the 12^-season aerobic rice was grown. Treatments in the micro-plots were with and without additional solophos application. Solophos rate was 4, 407.5kg ha^ which was equivalent to 10g solophos pot^ used in the pot experiment. An improved upland variety, Apo, was used for both pot and micro-plot experiments. Application of solophos significantly increased plant height, stem number, leaf area, chlorophyll meter reading, root dry weight, and total biomass in the pot experiment. The growth en-hancement by solophos application was also observed in the micro-plot experiment under the field conditions. Photosynthetic rate and spikelet number per m^2 were increased by solophos application in the micro-plot experiment. Although the mechanism of growth promotion by solophos application is not clear, this study suggested that solophos application could be used as one of crop management options that could minimize the yield decline of continuous monocropping of aerobic rice.Original Pape

    Effect of Leaf Phosphorus and Potassium Concentration on Chlorophyll Meter Reading in Rice

    Get PDF
    Chlorophyll meter (SPAD) is a convenient tool to estimate leaf nitrogen (N) concentration of rice plants. There is no information on the effects of leaf phosphorus (P) and potassium (K) concentration on SP AD readings and on the relationship between SPAD values and leaf N concentration in the literature. In 1996 dry season, cv IR72 was grown at the International Rice Research Institute (IRRI) and the Philippine Rice Research Institute (PhilRice) under various N, P and K fertilizer combinations. SPAD measurements were made on the topmost fully expanded leaves at mid-tillering and panicle initiation. The leaves were then detached, dried and analyzed for N, P and K. The SPAD values were highly correlated with leaf N concentration (r = 0.93 to 0.96). Fertilizer-K application did not affect SP AD values, leaf N concentration, or the relationship between the two. Phosphorus deficiency reduced leaf N concentration at mid-tillering, but increased leaf N concentration at panicle initiation when the same amount of N was applied. The SPAD values were 1 to 2 units greater for zero-P plants than P-treated plants at a given leaf N concentration at mid-tillering. At panicle initiation, the relationship between SPAD values and leaf N concentration was not significantly affected by leaf P status. These results suggest that a different regression equation between SP AD values and leaf N concentration should be used to estimate leaf N concentration of P-deficient and P-sufficient rice leaves at vegetative stage using a SPAD

    Rice yields decline with higher night temperature from global warming

    Get PDF
    The impact of projected global warming on crop yields has been evaluated by indirect methods using simulation models. Direct studies on the effects of observed climate change on crop growth and yield could provide more accurate information for assessing the impact of climate change on crop production. We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature by using data from irrigated field experiments conducted at the International Rice Research Institute Farm from 1992 to 2003. Here we report that annual mean maximum and minimum temperatures have increased by 0.35°C and 1.13°C, respectively, for the period 1979–2003 and a close linkage between rice grain yield and mean minimum temperature during the dry cropping season (January to April). Grain yield declined by 10% for each 1°C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming

    Effect of Leaf Phosphorus and Potassium Concentration on Chlorophyll Meter Reading in Rice

    Get PDF
    Chlorophyll meter (SPAD) is a convenient tool to estimate leaf nitrogen (N) concentration of rice plants. There is no information on the effects of leaf phosphorus (P) and potassium (K) concentration on SP AD readings and on the relationship between SPAD values and leaf N concentration in the literature. In 1996 dry season, cv IR72 was grown at the International Rice Research Institute (IRRI) and the Philippine Rice Research Institute (PhilRice) under various N, P and K fertilizer combinations. SPAD measurements were made on the topmost fully expanded leaves at mid-tillering and panicle initiation. The leaves were then detached, dried and analyzed for N, P and K. The SPAD values were highly correlated with leaf N concentration (r = 0.93 to 0.96). Fertilizer-K application did not affect SP AD values, leaf N concentration, or the relationship between the two. Phosphorus deficiency reduced leaf N concentration at mid-tillering, but increased leaf N concentration at panicle initiation when the same amount of N was applied. The SPAD values were 1 to 2 units greater for zero-P plants than P-treated plants at a given leaf N concentration at mid-tillering. At panicle initiation, the relationship between SPAD values and leaf N concentration was not significantly affected by leaf P status. These results suggest that a different regression equation between SP AD values and leaf N concentration should be used to estimate leaf N concentration of P-deficient and P-sufficient rice leaves at vegetative stage using a SPAD

    Solophos fertilizer improved rice plant growth in aerobic soil

    No full text
    corecore