13,017 research outputs found

    Vison excitations in near-critical quantum dimer models

    Full text link
    We study vison excitations in a quantum dimer model interpolating between the Rokhsar-Kivelson models on the square and triangular lattices. In the square-lattice case, the model is known to be critical and characterized by U(1) topological quantum numbers. Introducing diagonal dimers brings the model to a Z_2 resonating-valence-bond phase. We study variationally the emergence of vison excitations at low concentration of diagonal dimers, close to the critical point. We find that, in this regime, vison excitations are large in size and their structure resembles vortices in type-II superconductors.Comment: 6 pages, 2 figures, minor corrections corresponding to the published versio

    Single hole and vortex excitations in the doped Rokhsar-Kivelson quantum dimer model on the triangular lattice

    Full text link
    We consider the doped Rokhsar-Kivelson quantum dimer model on the triangular lattice with one mobile hole (monomer) at the Rokhsar-Kivelson point. The motion of the hole is described by two branches of excitations: the hole may either move with or without a trapped Z2 vortex (vison). We perform a study of the hole dispersion in the limit where the hole hopping amplitude is much smaller than the interdimer interaction. In this limit, the hole without vison moves freely and has a tight-binding spectrum. On the other hand, the hole with a trapped vison is strongly constrained due to interference effects and can only move via higher-order virtual processes.Comment: 4 pages, 4 figures; minor changes, replaced by published versio

    The nature of visons in the perturbed ferromagnetic and antiferromagnetic Kitaev honeycomb models

    Full text link
    The Kitaev honeycomb model hosts a fascinating fractionalized state of matter featuring emergent Majorana fermions and a vison particle that carries the flux of an emergent gauge field. In the exactly solvable model these visons are static but certain perturbations can induce their motion. We show that the nature of the vison motion induced by a Zeeman field is sharply distinct in the ferromagnetic vs the antiferromagnetic Kitaev models. Namely, in the ferromagnetic model the vison has a trivial non-projective translational symmetry, whereas in the antiferromagnetic Kitaev model it has a projective translational symmetry with π\pi-flux per unit cell. The vison band of the ferromagnetic case has zero Berry curvature, and no associated intrinsic contribution to the thermal Hall effect. In contrast, in the antiferromagnetic case there are two gapped vison bands with opposite Chern numbers and an associated intrinsic vison contribution to the thermal Hall effect. We discuss these findings in the light of the physics of the spin liquid candidate α\alpha-RuCl3_3.Comment: 15 pages, 14 figure

    Crystallization of the resonating valence bond liquid as vortex condensation

    Full text link
    We show that the liquid-to-crystal quantum phase transition in the Rokhsar--Kivelson dimer model on the two-dimensional triangular lattice occurs as a condensation of vortex-like excitations called ``visons''. This conclusion is drawn from the numerical studies of the vison spectrum in the liquid phase by using the Green's function Monte Carlo method. We find that visons remain the lowest excitation throughout the liquid phase and that their gap decreases continuously to zero at the phase transition. The nature of the crystal phase and the second order of the phase transition are in agreement with the earlier prediction of Moessner and Sondhi [Phys. Rev. B 63, 224401 (2001)].Comment: 4 pages, 4 figure

    Fractionalization, topological order, and cuprate superconductivity

    Full text link
    This paper is concerned with the idea that the electron is fractionalized in the cuprate high-TcT_c materials. We show how the notion of topological order may be used to develop a precise theoretical characterization of a fractionalized phase in spatial dimension higher than one. Apart from the fractional particles into which the electron breaks apart, there are non-trivial gapped topological excitations - dubbed "visons". A cylindrical sample that is fractionalized exhibits two disconnected topological sectors depending on whether a vison is trapped in the "hole" or not. Indeed, "vison expulsion" is to fractionalization what the Meissner effect ("flux expulsion") is to superconductivity. This understanding enables us to address a number of conceptual issues that need to be confronted by any theory of the cuprates based on fractionalization ideas. We argue that whether or not the electron fractionalizes in the cuprates is a sharp and well-posed question with a definite answer. We elaborate on our recent proposal for an experiment to unambiguously settle this issue.Comment: 18 pages, 7 figure

    Extending Luttinger's theorem to Z(2) fractionalized phases of matter

    Full text link
    Luttinger's theorem for Fermi liquids equates the volume enclosed by the Fermi surface in momentum space to the electron filling, independent of the strength and nature of interactions. Motivated by recent momentum balance arguments that establish this result in a non-perturbative fashion [M. Oshikawa, Phys. Rev. Lett. {\bf 84}, 3370 (2000)], we present extensions of this momentum balance argument to exotic systems which exhibit quantum number fractionalization focussing on Z2Z_2 fractionalized insulators, superfluids and Fermi liquids. These lead to nontrivial relations between the particle filling and some intrinsic property of these quantum phases, and hence may be regarded as natural extensions of Luttinger's theorem. We find that there is an important distinction between fractionalized states arising naturally from half filling versus those arising from integer filling. We also note how these results can be useful for identifying fractionalized states in numerical experiments.Comment: 24 pages, 5 eps figure
    • …
    corecore