24 research outputs found

    Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner

    Get PDF
    High tibial osteotomy (HTO) is a surgical procedure used to change the mechanical weight-bearing axis and alter the loads carried through the knee. Conventional indications for HTO are medial compartment osteoarthritis and varus malalignment of the knee causing pain and dysfunction. Traditionally, knee instability associated with varus thrust has been considered a contraindication. However, today the indications include patients with chronic ligament deficiencies and malalignment, because an HTO procedure can change not only the coronal but also the sagittal plane of the knee. The sagittal plane has generally been ignored in HTO literature, but its modification has a significant impact on biomechanics and joint stability. Indeed, decreased posterior tibial slope causes posterior tibia translation and helps the anterior cruciate ligament (ACL)-deficient knee. Vice versa, increased tibial slope causes anterior tibia translation and helps the posterior cruciate ligament (PCL)-deficient knee. A review of literature shows that soft tissue procedures alone are often unsatisfactory for chronic posterior instability if alignment is not corrected. Since limb alignment is the most important factor to consider in lower limb reconstructive surgery, diagnosis and treatment of limb malalignment should not be ignored in management of chronic ligamentous instabilities. This paper reviews the effects of chronic posterior instability and tibial slope alteration on knee and soft tissues, in addition to planning and surgical technique for chronic posterior and posterolateral instability with HTO

    The role of the amygdala in face perception and evaluation

    Get PDF
    Faces are one of the most significant social stimuli and the processes underlying face perception are at the intersection of cognition, affect, and motivation. Vision scientists have had a tremendous success of mapping the regions for perceptual analysis of faces in posterior cortex. Based on evidence from (a) single unit recording studies in monkeys and humans; (b) human functional localizer studies; and (c) meta-analyses of neuroimaging studies, I argue that faces automatically evoke responses not only in these regions but also in the amygdala. I also argue that (a) a key property of faces represented in the amygdala is their typicality; and (b) one of the functions of the amygdala is to bias attention to atypical faces, which are associated with higher uncertainty. This framework is consistent with a number of other amygdala findings not involving faces, suggesting a general account for the role of the amygdala in perception

    Simultaneous bilateral correction of genu varum with Smart frame

    No full text

    Association between traumatic bone marrow abnormalities of the knee, the trauma mechanism and associated soft-tissue knee injuries

    Full text link
    OBJECTIVES: To determine the association between traumatic bone marrow abnormalities, the knee injury mechanism, and associated soft tissue injuries in a larger cohort than those in the published literature. METHOD: Retrospective study including 220 patients with traumatic knee injuries. Knee MRIs were evaluated for trauma mechanism, soft tissue injury, and the location of bone marrow abnormalities. The locations of the abnormalities were correlated with trauma mechanisms and soft tissue injuries using the chi-square test with Bonferroni correction. RESULTS: One hundred and forty-four valgus injuries, 39 pivot shift injuries, 25 lateral patellar dislocations, 8 hyperextensions, and 4 dashboard injuries were included. Valgus and pivot shift injuries showed traumatic bone marrow abnormalities in the posterolateral regions of the tibia. Abnormalities after patellar dislocation were found in the anterolateral and centrolateral femur and patella. Hyperextension injuries were associated with abnormalities in almost all regions, and dashboard injuries were associated with changes in the anterior regions of the tibia and femur. CONCLUSIONS: Our study provides evidence of associations between traumatic bone marrow abnormality patterns and different trauma mechanisms in acute knee injury, and reveals some overlap, especially of the two most common trauma mechanisms (valgus and pivot shift), in a large patient cohort. KEY POINTS• Specific bone marrow oedema patterns after knee trauma were confirmed. • New associations between bone marrow oedema patterns and knee trauma were shown. • Bone marrow oedema patterns help in identifying associated soft tissue injuries
    corecore