133 research outputs found

    Killing forms on the five-dimensional Einstein-Sasaki Y(p,q) spaces

    Full text link
    We present the complete set of Killing-Yano tensors on the five-dimensional Einstein-Sasaki Y(p,q) spaces. Two new Killing-Yano tensors are identified, associated with the complex volume form of the Calabi-Yau metric cone. The corresponding hidden symmetries are not anomalous and the geodesic equations are superintegrable.Comment: 10 pages; improved versio

    Hidden symmetries of Eisenhart-Duval lift metrics and the Dirac equation with flux

    Full text link
    The Eisenhart-Duval lift allows embedding non-relativistic theories into a Lorentzian geometrical setting. In this paper we study the lift from the point of view of the Dirac equation and its hidden symmetries. We show that dimensional reduction of the Dirac equation for the Eisenhart-Duval metric in general gives rise to the non-relativistic Levy-Leblond equation in lower dimension. We study in detail in which specific cases the lower dimensional limit is given by the Dirac equation, with scalar and vector flux, and the relation between lift, reduction and the hidden symmetries of the Dirac equation. While there is a precise correspondence in the case of the lower dimensional massive Dirac equation with no flux, we find that for generic fluxes it is not possible to lift or reduce all solutions and hidden symmetries. As a by-product of this analysis we construct new Lorentzian metrics with special tensors by lifting Killing-Yano and Closed Conformal Killing-Yano tensors and describe the general Conformal Killing-Yano tensor of the Eisenhart-Duval lift metrics in terms of lower dimensional forms. Lastly, we show how dimensionally reducing the higher dimensional operators of the massless Dirac equation that are associated to shared hidden symmetries it is possible to recover hidden symmetry operators for the Dirac equation with flux.Comment: 18 pages, no figures. Version 3: some typos corrected, some discussions clarified, part of the abstract change

    Irreducible Killing Tensors from Third Rank Killing-Yano Tensors

    Full text link
    We investigate higher rank Killing-Yano tensors showing that third rank Killing-Yano tensors are not always trivial objects being possible to construct irreducible Killing tensors from them. We give as an example the Kimura IIC metric were from two rank Killing-Yano tensors we obtain a reducible Killing tensor and from third rank Killing-Yano tensors we obtain three Killing tensors, one reducible and two irreducible.Comment: 10 page

    Hidden symmetries in a gauge covariant approach, Hamiltonian reduction and oxidation

    Full text link
    Hidden symmetries in a covariant Hamiltonian formulation are investigated involving gauge covariant equations of motion. The special role of the Stackel-Killing tensors is pointed out. A reduction procedure is used to reduce the original phase space to another one in which the symmetries are divided out. The reverse of the reduction procedure is done by stages performing the unfolding of the gauge transformation followed by the Eisenhart lift in connection with scalar potentials.Comment: 15 pages; based on a talk at QTS-7 Conference, Prague, August 7-13, 201

    Spinning particles in Taub-NUT space

    Get PDF
    The geodesic motion of pseudo-classical spinning particles in Euclidean Taub-NUT space is analysed. The constants of motion are expressed in terms of Killing-Yano tensors. Some previous results from the literature are corrected.Comment: LaTeX, 8 page

    Generalized Killing equations and Taub-NUT spinning space

    Full text link
    The generalized Killing equations for the configuration space of spinning particles (spinning space) are analysed. Simple solutions of the homogeneous part of these equations are expressed in terms of Killing-Yano tensors. The general results are applied to the case of the four-dimensional euclidean Taub-NUT manifold.Comment: 10 pages, late

    Dynamical algebra and Dirac quantum modes in Taub-NUT background

    Full text link
    The SO(4,1) gauge-invariant theory of the Dirac fermions in the external field of the Kaluza-Klein monopole is investigated. It is shown that the discrete quantum modes are governed by reducible representations of the o(4) dynamical algebra generated by the components of the angular momentum operator and those of the Runge-Lenz operator of the Dirac theory in Taub-NUT background. The consequence is that there exist central and axial discrete modes whose spinors have no separated variables.Comment: 17 pages, latex, no figures. Version to appear in Class.Quantum Gra

    Fermion on curved spaces, symmetries, and quantum anomalies

    No full text
    We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. The gravitational and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge-Lenz vector of the Kepler-type problem. Using the Atiyah-Patodi-Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly
    corecore