595 research outputs found

    Quilting Stochastic Kronecker Product Graphs to Generate Multiplicative Attribute Graphs

    Full text link
    We describe the first sub-quadratic sampling algorithm for the Multiplicative Attribute Graph Model (MAGM) of Kim and Leskovec (2010). We exploit the close connection between MAGM and the Kronecker Product Graph Model (KPGM) of Leskovec et al. (2010), and show that to sample a graph from a MAGM it suffices to sample small number of KPGM graphs and \emph{quilt} them together. Under a restricted set of technical conditions our algorithm runs in O((log2(n))3E)O((\log_2(n))^3 |E|) time, where nn is the number of nodes and E|E| is the number of edges in the sampled graph. We demonstrate the scalability of our algorithm via extensive empirical evaluation; we can sample a MAGM graph with 8 million nodes and 20 billion edges in under 6 hours

    DFacTo: Distributed Factorization of Tensors

    Full text link
    We present a technique for significantly speeding up Alternating Least Squares (ALS) and Gradient Descent (GD), two widely used algorithms for tensor factorization. By exploiting properties of the Khatri-Rao product, we show how to efficiently address a computationally challenging sub-step of both algorithms. Our algorithm, DFacTo, only requires two sparse matrix-vector products and is easy to parallelize. DFacTo is not only scalable but also on average 4 to 10 times faster than competing algorithms on a variety of datasets. For instance, DFacTo only takes 480 seconds on 4 machines to perform one iteration of the ALS algorithm and 1,143 seconds to perform one iteration of the GD algorithm on a 6.5 million x 2.5 million x 1.5 million dimensional tensor with 1.2 billion non-zero entries.Comment: Under review for NIPS 201

    Extending local features with contextual information in graph kernels

    Full text link
    Graph kernels are usually defined in terms of simpler kernels over local substructures of the original graphs. Different kernels consider different types of substructures. However, in some cases they have similar predictive performances, probably because the substructures can be interpreted as approximations of the subgraphs they induce. In this paper, we propose to associate to each feature a piece of information about the context in which the feature appears in the graph. A substructure appearing in two different graphs will match only if it appears with the same context in both graphs. We propose a kernel based on this idea that considers trees as substructures, and where the contexts are features too. The kernel is inspired from the framework in [6], even if it is not part of it. We give an efficient algorithm for computing the kernel and show promising results on real-world graph classification datasets.Comment: To appear in ICONIP 201
    corecore