169 research outputs found

    Random Network Behaviour of Protein Structures

    Full text link
    Geometric and structural constraints greatly restrict the selection of folds adapted by protein backbones, and yet, folded proteins show an astounding diversity in functionality. For structure to have any bearing on function, it is thus imperative that, apart from the protein backbone, other tunable degrees of freedom be accountable. Here, we focus on side-chain interactions, which non-covalently link amino acids in folded proteins to form a network structure. At a coarse-grained level, we show that the network conforms remarkably well to realizations of random graphs and displays associated percolation behavior. Thus, within the rigid framework of the protein backbone that restricts the structure space, the side-chain interactions exhibit an element of randomness, which account for the functional flexibility and diversity shown by proteins. However, at a finer level, the network exhibits deviations from these random graphs which, as we demonstrate for a few specific examples, reflect the intrinsic uniqueness in the structure and stability, and perhaps specificity in the functioning of biological proteins.Comment: Expanded version available in Molecular BioSystem

    Functional correlation of bacterial LuxS with their quaternary associations: interface analysis of the structure networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genome of a wide variety of prokaryotes contains the <it>luxS </it>gene homologue, which encodes for the protein S-ribosylhomocysteinelyase (LuxS). This protein is responsible for the production of the quorum sensing molecule, AI-2 and has been implicated in a variety of functions such as flagellar motility, metabolic regulation, toxin production and even in pathogenicity. A high structural similarity is present in the LuxS structures determined from a few species. In this study, we have modelled the structures from several other species and have investigated their dimer interfaces. We have attempted to correlate the interface features of LuxS with the phenotypic nature of the organisms.</p> <p>Results</p> <p>The protein structure networks (PSN) are constructed and graph theoretical analysis is performed on the structures obtained from X-ray crystallography and on the modelled ones. The interfaces, which are known to contain the active site, are characterized from the PSNs of these homodimeric proteins. The key features presented by the protein interfaces are investigated for the classification of the proteins in relation to their function. From our analysis, structural interface motifs are identified for each class in our dataset, which showed distinctly different pattern at the interface of LuxS for the probiotics and some extremophiles. Our analysis also reveals potential sites of mutation and geometric patterns at the interface that was not evident from conventional sequence alignment studies.</p> <p>Conclusion</p> <p>The structure network approach employed in this study for the analysis of dimeric interfaces in LuxS has brought out certain structural details at the side-chain interaction level, which were elusive from the conventional structure comparison methods. The results from this study provide a better understanding of the relation between the <it>luxS </it>gene and its functional role in the prokaryotes. This study also makes it possible to explore the potential direction towards the design of inhibitors of LuxS and thus towards a wide range of antimicrobials.</p

    Elucidation of the conformational free energy landscape in H.pylori LuxS and its implications to catalysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the major challenges in understanding enzyme catalysis is to identify the different conformations and their populations at detailed molecular level in response to ligand binding/environment. A detail description of the ligand induced conformational changes provides meaningful insights into the mechanism of action of enzymes and thus its function.</p> <p>Results</p> <p>In this study, we have explored the ligand induced conformational changes in <it>H.pylori </it>LuxS and the associated mechanistic features. LuxS, a dimeric protein, produces the precursor (4,5-dihydroxy-2,3-pentanedione) for autoinducer-2 production which is a signalling molecule for bacterial quorum sensing. We have performed molecular dynamics simulations on <it>H.pylori </it>LuxS in its various ligand bound forms and analyzed the simulation trajectories using various techniques including the structure network analysis, free energy evaluation and water dynamics at the active site. The results bring out the mechanistic details such as co-operativity and asymmetry between the two subunits, subtle changes in the conformation as a response to the binding of active and inactive forms of ligands and the population distribution of different conformations in equilibrium. These investigations have enabled us to probe the free energy landscape and identify the corresponding conformations in terms of network parameters. In addition, we have also elucidated the variations in the dynamics of water co-ordination to the Zn<sup>2+ </sup>ion in LuxS and its relation to the rigidity at the active sites.</p> <p>Conclusions</p> <p>In this article, we provide details of a novel method for the identification of conformational changes in the different ligand bound states of the protein, evaluation of ligand-induced free energy changes and the biological relevance of our results in the context of LuxS structure-function. The methodology outlined here is highly generalized to illuminate the linkage between structure and function in any protein of known structure.</p

    Molecular mechanism of facilitated transport by carrier ionophores: a study of energetics

    Get PDF
    The mechanism of ion transport by carrier ionophores is investigated. The electrostatic potential is used as index of the binding energy of a cation with valinomycin and enniatin B. The ion binding capacities of these ionophores are studied as functions of conformation and of distance of an approaching ion-complex. The energetics of dirnerisation and the binding energy profile of an ion in dimers of valinomycin and enniatin B are examined. The binding energy profiles and the electrostatic potential surfaces of valinomycin and enniatin B are compared in relation to their biological activities

    Insights into the Fold Organization of TIM Barrel from Interaction Energy Based Structure Networks

    Get PDF
    There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or “sequence conservation” as the basis for their understanding. Recently “interaction energy” based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the “interaction conservation” viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design

    Effect of the valine-threonine constraint on the dynamics of the proline helix- A molecular dynamics study

    Get PDF
    Proline residues in helices play an important role in the structure of proteins. The proline residue introduces a kink in the helix which varies from about 5° to 50°. The presence of other residues such as threonine or valine near the proline region can influence the flexibility exhibited by the kinked helix, which can have an important biological role. In the present paper, the constraint introduced by threonine and valine on a proline helix is investigated by molecular dynamics studies. The systems considered are (1) a poly-alanine helix with threonine-proline residues (TP) and (2) a poly-alanine helix with valine-threonineproline residues (VTP), in the middle. Molecular dynamics simulations are carried out on these two systems for 500 ps. The results are analyzed in terms of structural transitions, bend-related parameters and sidechain orientations

    Effect of the valine-threonine constraint on the dynamics of the proline helix -A molecular dynamics study

    Get PDF
    Al~traet. Proline residues in helices play an important role in the structure of proteins. The proline residue introduces a kink in the helix which varies from about 5 ~ to 50 ~ The presence of other residues such as threonine or valine near the proline region can influence the flexibility exhibited by the kinked helix, which can have an important biological role. In the present paper, the constraint introduced by threonine and valine on a proline helix is investigated by molecular dynamics studies. The systems considered are (1) a poly-alanine helix with threonine-proline residues (TP) and (2) a poly-alanine helix with valine-threonineproline residues (VTP), in the middle. Molecular dynamics simulations are carried out on these two systems for 500ps. The results are analyzed in terms of structural transitions, bend-related parameters and sidechain orientations

    Binding of active site directed ligands to phospholipase A2: implications on the molecular constraints and catalytic mechanism

    Get PDF
    Molecular constraints for the localization of active site directed ligands (competitive inhibitors and substrates) in the active site of phospholipase A2 (PLA2) are characterized. Structure activity relationships with known inhibitors suggest that the head group interactions dominate the selectivity as well as a substantial part of the affinity. Theab initio fitting of the amide ligands in the active site was carried out to characterize the head group interactions. Based on a systematic coordinate space search, formamide is docked with known experimental constraints such as coordination of the carbonyl group to Ca2+ and hydrogen bond between amide nitrogen and ND1 of His48. An optimal position for a bound water molecule is identified and its significance for the catalytic mechanism is postulated. Unlike the traditional "pseudo-triad" mechanism, the "Ca-coordinated-oxyanion" mechanism proposed here invokes activation of the catalytic water to form the oxyanion in the coordination sphere of calcium. As it attacks the carbonyl carbon of the ester, a near-tetrahedral intermediate is formed. As the second proton of the catalytic water is abstracted by the ester oxygen, its reorientation and simultaneous cleavage form hydrogen bond with ND1 of His48. In this mechanism of esterolysis, a catalytic role for the water co-ordinated to Ca2+ is recognised
    corecore