4 research outputs found
KORTES Mission for Solar Activity Monitoring Onboard International Space Station
peer reviewedWe present a description of the recent advances in the development of the KORTES assembly—the first solar oriented mission designed for the Russian segment of the International Space Station. KORTES consists of several imaging and spectroscopic instruments collectively covering a wide spectral range extending from extreme ultraviolet (EUV) wavelengths to X-rays. The EUV telescopes inside KORTES will trace the origin and dynamics of various solar phenomena, e.g., flares, CMEs, eruptions etc. EUV spectra provided by grazing-incidence spectroheliographs will enable precise DEM-diagnostics during these events. The monochromatic X-ray imager will observe the formation of hot plasma in active regions and outside them. The SolpeX module inside KORTES will offer an opportunity to measure fluxes, Doppler shifts and polarization of soft X-ray emission both in lines and continuum. SolpeX observations will contribute to studies of particle beams and chromospheric evaporation. The instrumentation of KORTES will employ a variety of novel multilayer and crystal optics. The deployment of KORTES is planned for 2024
Hydrogenation of Graphene by Reaction at High Pressure and High Temperature
The chemical reaction between hydrogen and purely sp2-bonded graphene to form graphene’s purely sp3-bonded analogue, graphane, potentially allows the synthesis of a much wider variety of novel two-dimensional materials by opening a pathway to the application of conventional chemistry methods in graphene. Graphene is currently hydrogenated by exposure to atomic hydrogen in a vacuum, but these methods have not yielded a complete conversion of graphene to graphane, even with graphene exposed to hydrogen on both sides of the lattice. By heating graphene in molecular hydrogen under compression to modest high pressure in a diamond anvil cell (2.6–5.0 GPa), we are able to react graphene with hydrogen and propose a method whereby fully hydrogenated graphane may be synthesized for the first time
Capillary phenomena in the framework of the two-dimensional density functional theory
We present results of application of the density functional theory (DFT) to adsorption and desorption in finite and infinite cylindrical pores accounting for the density distribution in radial and axial directions. Capillary condensation via formation of bridges is considered using canonical and grand canonical versions of the 2D DFT. The potential barrier of nucleation is determined as a function of the bulk pressure and the pore diameter. In the framework of the conventional assumptions on intermolecular interactions both 1D and 2D DFT versions lead to the same results and confirm the classical scenario of condensation and evaporation: the condensation occurs at the vapor-like spinodal point, and the evaporation corresponds to the equilibrium transition pressure. The analysis of experimental data on argon and nitrogen adsorption on MCM-41 samples seems to not completely corroborate this scenario, with adsorption branch being better described by the equilibrium pressure - diameter dependence. This points to the necessity of the further development of basic representations on the hysteresis phenomena