373 research outputs found
Fluctuation relation for a L\'evy particle
We study the work fluctuations of a particle subjected to a deterministic
drag force plus a random forcing whose statistics is of the L\'evy type. In the
stationary regime, the probability density of the work is found to have ``fat''
power-law tails which assign a relatively high probability to large
fluctuations compared with the case where the random forcing is Gaussian. These
tails lead to a strong violation of existing fluctuation theorems, as the ratio
of the probabilities of positive and negative work fluctuations of equal
magnitude behaves in a non-monotonic way. Possible experiments that could probe
these features are proposed.Comment: 5 pages, 2 figures, RevTeX4; v2: minor corrections and references
added; v3: typos corrected, new conclusion, close to published versio
Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites
Many experiments have searched for supersymmetric WIMP dark matter, with null
results. This may suggest to look for more exotic possibilities, for example
compact ultra-dense quark nuggets, widely discussed in literature with several
different names. Nuclearites are an example of candidate compact objects with
atomic size cross section. After a short discussion on nuclearites, the result
of a nuclearite search with the gravitational wave bar detectors Nautilus and
Explorer is reported. The geometrical acceptance of the bar detectors is 19.5
sr, that is smaller than that of other detectors used for similar
searches. However, the detection mechanism is completely different and is more
straightforward than in other detectors. The experimental limits we obtain are
of interest because, for nuclearites of mass less than g, we find a
flux smaller than that one predicted considering nuclearites as dark matter
candidates. Particles with gravitational only interactions (newtorites) are
another example. In this case the sensitivity is quite poor and a short
discussion is reported on possible improvements.Comment: published on Astroparticle Physics Sept 25th 2016 replaced fig 1
Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors
The gravitational wave resonant detectors can be used as detectors of quark
nuggets, like nuclearites (nuclear matter with a strange quark). This search
has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar
detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was
located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower
detectors: signals in the bar due to showers are continuously detected and used
to characterize the antenna performances. The bar excitation mechanism is based
on the so called thermo-acoustic effect, studied on dedicated experiments that
use particle beams. This mechanism predicts that vibrations of bars are induced
by the heat deposited in the bar from the particle. The geometrical acceptance
of the bar detectors is 19.5 sr, that is smaller than that of other
detectors used for similar searches. However, the detection mechanism is
completely different and is more straightforward than in other detectors. We
will show the results of ten years of data from NAUTILUS (2003-2012) and 7
years from EXPLORER (2003-2009). The experimental limits we obtain are of
interest because, for nuclearites of mass less than grams, we find a
flux smaller than that one predicted considering nuclearites as dark matter
candidates.Comment: presented to the 33rd International Cosmic Ray Conference Rio de
Janeiro 201
Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS
We performed a search for short gravitational wave bursts using about 3 years
of data of the resonant bar detectors Nautilus and Explorer. Two types of
analysis were performed: a search for coincidences with a low background of
accidentals (0.1 over the entire period), and the calculation of upper limits
on the rate of gravitational wave bursts. Here we give a detailed account of
the methodology and we report the results: a null search for coincident events
and an upper limit that improves over all previous limits from resonant
antennas, and is competitive, in the range h_rss ~1E-19, with limits from
interferometric detectors. Some new methodological features are introduced that
have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure
Entropy production and fluctuation theorems under feedback control: the molecular refrigerator model revisited
We revisit the model of a Brownian particle in a heat bath submitted to an
actively controlled force proportional to the velocity that leads to thermal
noise reduction (cold damping). We investigate the influence of the continuous
feedback on the fluctuations of the total entropy production and show that the
explicit expression of the detailed fluctuation theorem involves different
dynamics and observables in the forward and backward processes. As an
illustration, we study the analytically solvable case of a harmonic oscillator
and calculate the characteristic function of the entropy production in a
nonequilibrium steady state. We then determine the corresponding large
deviation function which results from an unusual interplay between 'boundary'
and 'bulk' contributions.Comment: 16 pages, 5 figures. References 9,10,13,14,15 added. A few changes in
the text. Accepted for publication in J. Stat. Mec
Effect of cosmic rays on the resonant gravitational wave detector NAUTILUS at temperature T=1.5 K
The interaction between cosmic rays and the gravitational wave bar detector
NAUTILUS is experimentally studied with the aluminum bar at temperature of
T=1.5 K. The results are compared with those obtained in the previous runs when
the bar was at T=0.14 K. The results of the run at T = 1.5 K are in agreement
with the thermo-acoustic model; no large signals at unexpected rate are
noticed, unlike the data taken in the run at T = 0.14 K. The observations
suggest a larger efficiency in the mechanism of conversion of the particle
energy into vibrational mode energy when the aluminum bar is in the
superconductive status.Comment: 7 pages, 3 figures, 2 tables. Accepted by Physics Letters
Increasing the bandwidth of resonant gravitational antennas: The case of Explorer
Resonant gravitational wave detectors with an observation bandwidth of tens
of hertz are a reality: the antenna Explorer, operated at CERN by the ROG
collaboration, has been upgraded with a new read-out. In this new
configuration, it exhibits an unprecedented useful bandwidth: in over 55 Hz
about its frequency of operation of 919 Hz the spectral sensitivity is better
than 10^{-20} /sqrt(Hz) . We describe the detector and its sensitivity and
discuss the foreseable upgrades to even larger bandwidths.Comment: 4 pages- 4 figures Acceted for publication on Physical Review Letter
Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001
We report the result from a search for bursts of gravitational waves using
data collected by the cryogenic resonant detectors EXPLORER and NAUTILUS during
the year 2001, for a total measuring time of 90 days. With these data we
repeated the coincidence search performed on the 1998 data (which showed a
small coincidence excess) applying data analysis algorithms based on known
physical characteristics of the detectors. With the 2001 data a new interesting
coincidence excess is found when the detectors are favorably oriented with
respect to the Galactic Disk
Fluctuations in granular gases
A driven granular material, e.g. a vibrated box full of sand, is a stationary
system which may be very far from equilibrium. The standard equilibrium
statistical mechanics is therefore inadequate to describe fluctuations in such
a system. Here we present numerical and analytical results concerning energy
and injected power fluctuations. In the first part we explain how the study of
the probability density function (pdf) of the fluctuations of total energy is
related to the characterization of velocity correlations. Two different regimes
are addressed: the gas driven at the boundaries and the homogeneously driven
gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of
homogeneity in hydrodynamics profiles, even in the absence of velocity
correlations, the fluctuations of total energy are non-trivial and may lead to
erroneous conclusions about the role of correlations. In the second part of the
chapter we take into consideration the fluctuations of injected power in driven
granular gas models. Recently, real and numerical experiments have been
interpreted as evidence that the fluctuations of power injection seem to
satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an
alternative interpretation of such results which invalidates the
Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and
using techniques from large deviation theory, the general validity of a
Fluctuation Relation for power injection in driven granular gases is
questioned. Finally a functional is defined using the Lebowitz-Spohn approach
for Markov processes applied to the linear inelastic Boltzmann equation
relevant to describe the motion of a tracer particle. Such a functional results
to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure
Initial operation of the International Gravitational Event Collaboration
The International Gravitational Event Collaboration, IGEC, is a coordinated
effort by research groups operating gravitational wave detectors working
towards the detection of millisecond bursts of gravitational waves. Here we
report on the current IGEC resonant bar observatory, its data analysis
procedures, the main properties of the first exchanged data set. Even though
the available data set is not complete, in the years 1997 and 1998 up to four
detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted
to the International Journal of Modern Physic
- âŠ