20 research outputs found

    Multimodal Evaluation of TMS - Induced Somatosensory Plasticity and Behavioral Recovery in Rats With Contusion Spinal Cord Injury

    Get PDF
    Introduction: Spinal cord injury (SCI) causes partial or complete damage to sensory and motor pathways and induces immediate changes in cortical function. Current rehabilitative strategies do not address this early alteration, therefore impacting the degree of neuroplasticity and subsequent recovery. The following study aims to test if a non-invasive brain stimulation technique such as repetitive transcranial magnetic stimulation (rTMS) is effective in promoting plasticity and rehabilitation, and can be used as an early intervention strategy in a rat model of SCI.Methods: A contusion SCI was induced at segment T9 in adult rats. An rTMS coil was positioned over the brain to deliver high frequency stimulation. Behavior, motor and sensory functions were tested in three groups: SCI rats that received high-frequency (20 Hz) rTMS within 10 min post-injury (acute-TMS; n = 7); SCI rats that received TMS starting 2 weeks post-injury (chronic-TMS; n = 5), and SCI rats that received sham TMS (no-TMS, n = 5). Locomotion was evaluated by the Basso, Beattie, and Bresnahan (BBB) and gridwalk tests. Motor evoked potentials (MEP) were recorded from the forepaw across all groups to measure integrity of motor pathways. Functional MRI (fMRI) responses to contralateral tactile hindlimb stimulation were measured in an 11.7T horizontal bore small-animal scanner.Results: The acute-TMS group demonstrated the fastest improvements in locomotor performance in both the BBB and gridwalk tests compared to chronic and no-TMS groups. MEP responses from forepaw showed significantly greater difference in the inter-peak latency between acute-TMS and no-TMS groups, suggesting increases in motor function. Finally, the acute-TMS group showed increased fMRI-evoked responses to hindlimb stimulation over the right and left hindlimb (LHL) primary somatosensory representations (S1), respectively; the chronic-TMS group showed moderate sensory responses in comparison, and the no-TMS group exhibited the lowest sensory responses to both hindlimbs.Conclusion: The results suggest that rTMS therapy beginning in the acute phase after SCI promotes neuroplasticity and is an effective rehabilitative approach in a rat model of SCI

    Spinal cord organogenesis model reveals role of Flk1+ cells in self-organization of neural progenitor cells into complex spinal cord tissue

    Get PDF
    A platform for studying spinal cord organogenesis in vivo where embryonic stem cell (ESC)-derived neural progenitor cells (NPC) self-organize into spinal cord-like tissue after transplantation in subarachnoid space of the spinal cord has been described. We advance the applicability of this platform by imaging in vivo the formed graft through T2w magnetic resonance imaging (MRI). Furthermore, we used diffusion tensor imaging (DTI) to verify the stereotypical organization of the graft showing that it mimics the host spinal cord. Within the graft white matter (WM) we identified astrocytes that form glial limitans, myelinating oligodendrocytes, and myelinated axons with paranodes. Within the graft grey matter (GM) we identified cholinergic, glutamatergic, serotonergic and dopaminergic neurons. Furthermore, we demonstrate the presence of ESC-derived complex vasculature that includes the presence of blood brain barrier. In addition to the formation of mature spinal cord tissue, we describe factors that drive this process. Specifically, we identify Flk1+ cells as necessary for spinal cord formation, and synaptic connectivity with the host spinal cord and formation of host-graft chimeric vasculature as contributing factors. This model can be used to study spinal cord organogenesis, and as an in vivo drug discovery platform for screening potential therapeutic compounds and their toxicity. Keywords: Embryonic stem cells, Neural progenitor cells, Spinal cord organogenesis, Flk

    RSNs with significant temporal structures.

    No full text
    <p>TOP Existence of significant (after correction for multiple comparisons) linear trends in three RSN outcome measures, namely the (a) spatial similarity (eta-squared, η<sup>2</sup>), (b) temporal signal fluctuation magnitude, and (c) BNC, are visualized using matrices. Red blocks indicate significant positive linear trend, blue blocks negative trend, and black boxes no significant trend. MIDDLE Existence of significant (after correction for multiple comparisons) annual periodicity in three RSN outcome measures. Red blocks indicate significant annual periodicity and black boxes no annual periodicity. BOTTOM AR orders of the estimated ARMA models for RSNs and RSN pairs are visualized for each outcome measures, where black box indicates no autocorrelation, red box AR order of 1, yellow box AR order of 2, and white box AR order of 3. Refer to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0140134#pone.0140134.s006" target="_blank">S3 Table</a> for information on full ARMA model parameters.</p

    Reproducibility of between-network connectivity (BNC) measurements.

    No full text
    <p>The combined BNC matrices show the degree of temporal synchrony between RSN pairs. Mean (a) and standard deviation (SD) (b) BNC values of the single- (below the main diagonal) and multi-participant (above the main diagonal) are shown. The diagonal elements were zeroed for display purposes. (c) Absolute value of the difference between the single- and the multi-participant BNC values. (d) Ten RSN pairs with the smallest (top) and the biggest (bottom) differences between single- and multi-participant mean BNC values. Mean BNC values from the single-subject dataset are overlaid as magenta circles on boxplots reporting on multi-participant data.</p

    RSNs with significant linear trends in RSN outcome measures.

    No full text
    <p>Intercept and slope of the estimated linear trend, as well as the slope’s F statistic and p-value in three RSN outcome measures, namely the (a) spatial similarity (eta-squared, η<sup>2</sup>), (b) temporal fluctuation magnitude, and (c) BNC, for each RSNs with significant linear trends are listed.</p><p>RSNs with significant linear trends in RSN outcome measures.</p
    corecore