13 research outputs found

    DeepDynamicHand: A Deep Neural Architecture for Labeling Hand Manipulation Strategies in Video Sources Exploiting Temporal Information

    Get PDF
    Humans are capable of complex manipulation interactions with the environment, relying on the intrinsic adaptability and compliance of their hands. Recently, soft robotic manipulation has attempted to reproduce such an extraordinary behavior, through the design of deformable yet robust end-effectors. To this goal, the investigation of human behavior has become crucial to correctly inform technological developments of robotic hands that can successfully exploit environmental constraint as humans actually do. Among the different tools robotics can leverage on to achieve this objective, deep learning has emerged as a promising approach for the study and then the implementation of neuro-scientific observations on the artificial side. However, current approaches tend to neglect the dynamic nature of hand pose recognition problems, limiting the effectiveness of these techniques in identifying sequences of manipulation primitives underpinning action generation, e.g., during purposeful interaction with the environment. In this work, we propose a vision-based supervised Hand Pose Recognition method which, for the first time, takes into account temporal information to identify meaningful sequences of actions in grasping and manipulation tasks. More specifically, we apply Deep Neural Networks to automatically learn features from hand posture images that consist of frames extracted from grasping and manipulation task videos with objects and external environmental constraints. For training purposes, videos are divided into intervals, each associated to a specific action by a human supervisor. The proposed algorithm combines a Convolutional Neural Network to detect the hand within each video frame and a Recurrent Neural Network to predict the hand action in the current frame, while taking into consideration the history of actions performed in the previous frames. Experimental validation has been performed on two datasets of dynamic hand-centric strategies, where subjects regularly interact with objects and environment. Proposed architecture achieved a very good classification accuracy on both datasets, reaching performance up to 94%, and outperforming state of the art techniques. The outcomes of this study can be successfully applied to robotics, e.g., for planning and control of soft anthropomorphic manipulators

    From humans to robots: The role of cutaneous impairment in human environmental constraint exploitation to inform the design of robotic hands

    Get PDF
    Human hands are capable of a variety of movements, thanks to their extraordinary biomechanical structure and relying on the richness of human tactile information. Recently, soft robotic hands have opened exciting possibilities and, al the same time, new issues related to planning and control. In this work, we propose to study human strategies in environmental constraint exploitation to grasp objects from a table. We have considered both the case where participants' fingertips were free and with a rigid shell worn on them to understand the role of cutaneous touch. Main kinematic strategies were quantified and classified in an unsupervised manner. The principal strategies appear to be consistent in both experimental conditions, although cluster cardinality differs. Furthermore, as expected, tactile feedback improves both grasp precision and quality performance. Results opens interesting perspective for sensing and control of soft manipulators

    Learning from humans how to grasp: a data-driven architecture for autonomous grasping with anthropomorphic soft hands

    Get PDF
    Soft hands are robotic systems that embed compliant elements in their mechanical design. This enables an effective adaptation with the items and the environment, and ultimately, an increase in their grasping performance. These hands come with clear advantages in terms of ease-to-use and robustness if compared with classic rigid hands, when operated by a human. However, their potential for autonomous grasping is still largely unexplored, due to the lack of suitable control strategies. To address this issue, in this letter, we propose an approach to enable soft hands to autonomously grasp objects, starting from the observations of human strategies. A classifier realized through a deep neural network takes as input the visual information on the object to be grasped, and predicts which action a human would perform to achieve the goal. This information is hence used to select one among a set of human-inspired primitives, which define the evolution of the soft hand posture as a combination of anticipatory action and touch-based reactive grasp. The architecture is completed by the hardware component, which consists of an RGB camera to look at the scene, a 7-DoF manipulator, and a soft hand. The latter is equipped with inertial measurement units at the fingernails for detecting contact with the object. We extensively tested the propose

    Postural Hand Synergies during Environmental Constraint Exploitation

    Get PDF
    Humans are able to intuitively exploit the shape of an object and environmental constraints to achieve stable grasps and perform dexterous manipulations. In doing that, a vast range of kinematic strategies can be observed. However, in this work we formulate the hypothesis that such ability can be described in terms of a synergistic behavior in the generation of hand postures, i.e., using a reduced set of commonly used kinematic patterns. This is in analogy with previous studies showing the presence of such behavior in different tasks, such as grasping. We investigated this hypothesis in experiments performed by six subjects, who were asked to grasp objects from a flat surface. We quantitatively characterized hand posture behavior from a kinematic perspective, i.e., the hand joint angles, in both pre-shaping and during the interaction with the environment. To determine the role of tactile feedback, we repeated the same experiments but with subjects wearing a rigid shell on the fingertips to reduce cutaneous afferent inputs. Results show the persistence of at least two postural synergies in all the considered experimental conditions and phases. Tactile impairment does not alter significantly the first two synergies, and contact with the environment generates a change only for higher order Principal Components. A good match also arises between the first synergy found in our analysis and the first synergy of grasping as quantified by previous work. The present study is motivated by the interest of learning from the human example, extracting lessons that can be applied in robot design and control. Thus, we conclude with a discussion on implications for robotics of our findings

    DeepDynamicHand: A Deep Neural Architecture for Labeling Hand Manipulation Strategies in Video Sources Exploiting Temporal Information

    Get PDF
    Humans are capable of complex manipulation interactions with the environment, relying on the intrinsic adaptability and compliance of their hands. Recently, soft robotic manipulation has attempted to reproduce such an extraordinary behavior, through the design of deformable yet robust end-effectors. To this goal, the investigation of human behavior has become crucial to correctly inform technological developments of robotic hands that can successfully exploit environmental constraint as humans actually do. Among the different tools robotics can leverage on to achieve this objective, deep learning has emerged as a promising approach for the study and then the implementation of neuro-scientific observations on the artificial side. However, current approaches tend to neglect the dynamic nature of hand pose recognition problems, limiting the effectiveness of these techniques in identifying sequences of manipulation primitives underpinning action generation, e.g., during purposeful interaction with the environment. In this work, we propose a vision-based supervised Hand Pose Recognition method which, for the first time, takes into account temporal information to identify meaningful sequences of actions in grasping and manipulation tasks. More specifically, we apply Deep Neural Networks to automatically learn features from hand posture images that consist of frames extracted from grasping and manipulation task videos with objects and external environmental constraints. For training purposes, videos are divided into intervals, each associated to a specific action by a human supervisor. The proposed algorithm combines a Convolutional Neural Network to detect the hand within each video frame and a Recurrent Neural Network to predict the hand action in the current frame, while taking into consideration the history of actions performed in the previous frames. Experimental validation has been performed on two datasets of dynamic hand-centric strategies, where subjects regularly interact with objects and environment. Proposed architecture achieved a very good classification accuracy on both datasets, reaching performance up to 94%, and outperforming state of the art techniques. The outcomes of this study can be successfully applied to robotics, e.g., for planning and control of soft anthropomorphic manipulators

    Unsupervised and supervised methods for automatic human hand pose recognition for robotics and human robot interaction

    No full text
    Hand Pose Recognition (HPR) play an important role in human-computer interactions (HCI) and human-robot interactions (HRI). However, since the hand pose has high degrees of freedom (DoF) for joints, and poses are always flexible, hand pose estimation with high precision is still a challenge problem. In this work, a two-stage HPR system is proposed. In the first stage, I implement a Hand Pose Reconstruction algorithm, and a non-vision based unsupervised HPR method. I describe the general procedure, model construction, and experimental results of tracking hand kinematics using extended Kalman filter (EKF) based on data recorded from active surface markers. I used a hand model with 26 DoF that consists of hand global posture, and digits. The reconstructions obtained from four different subjects were used to implement an unsupervised method to recognize hand actions during grasping and manipulation tasks, showing a high degree of accuracy. In the second stage, I implement a vision-based supervised HPR method. Deep Neural Networks (DNNs) is applied to automatically learn features from hand posture images. Images consist of frames extracted from grasping and manipulation task videos. Such videos are divided into intervals and at each interval is associated a specific action by a supervisor. Experiments verify that the proposed system achieves a recognition accuracy as high as 85.12%

    Bridging the simulation-to-real gap for AI-based needle and target detection in robot-assisted ultrasound-guided interventions

    No full text
    Abstract Background Artificial intelligence (AI)-powered, robot-assisted, and ultrasound (US)-guided interventional radiology has the potential to increase the efficacy and cost-efficiency of interventional procedures while improving postsurgical outcomes and reducing the burden for medical personnel. Methods To overcome the lack of available clinical data needed to train state-of-the-art AI models, we propose a novel approach for generating synthetic ultrasound data from real, clinical preoperative three-dimensional (3D) data of different imaging modalities. With the synthetic data, we trained a deep learning-based detection algorithm for the localization of needle tip and target anatomy in US images. We validated our models on real, in vitro US data. Results The resulting models generalize well to unseen synthetic data and experimental in vitro data making the proposed approach a promising method to create AI-based models for applications of needle and target detection in minimally invasive US-guided procedures. Moreover, we show that by one-time calibration of the US and robot coordinate frames, our tracking algorithm can be used to accurately fine-position the robot in reach of the target based on 2D US images alone. Conclusions The proposed data generation approach is sufficient to bridge the simulation-to-real gap and has the potential to overcome data paucity challenges in interventional radiology. The proposed AI-based detection algorithm shows very promising results in terms of accuracy and frame rate. Relevance statement This approach can facilitate the development of next-generation AI algorithms for patient anatomy detection and needle tracking in US and their application to robotics. Key points • AI-based methods show promise for needle and target detection in US-guided interventions. • Publicly available, annotated datasets for training AI models are limited. • Synthetic, clinical-like US data can be generated from magnetic resonance or computed tomography data. • Models trained with synthetic US data generalize well to real in vitro US data. • Target detection with an AI model can be used for fine positioning of the robot. Graphical Abstrac

    Modeling Human Motor Skills to Enhance Robots’ Physical Interaction

    No full text
    The need for users’ safety and technology acceptability has incredibly increased with the deployment of co-bots physically interacting with humans in industrial settings, and for people assistance. A well-studied approach to meet these requirements is to ensure human-like robot motions and interactions. In this manuscript, we present a research approach that moves from the understanding of human movements and derives usefull guidelines for the planning of arm movements and the learning of skills for physical interaction of robots with the surrounding environment.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Learning & Autonomous Contro

    Understanding Human Manipulation with the Environment: A Novel Taxonomy for Video Labelling

    No full text
    In recent years, the spread of data-driven approaches for robotic grasp synthesis has come with the increasing need for reliable datasets, which can be built e.g. through video labelling. To this goal, it is important to define suitable rules to characterize the main human grasp types, for easily identifying them in video streams. In this work, we present a novel taxonomy that builds upon the related state of the art, but it is specifically thought for video labelling. It focuses on the interaction of the hand with the environment and accounts for pre-contact phases, bi-manual grasps as well as non-prehensile strategies. This study is complemented with a dataset of labelled videos of subjects performing activities of daily living, for a total of nine hours, and the description of MatLab tools for labelling new videos. Both hands were labelled at any time. We used these labelled data for performing a preliminary statistical description of the occurrences of the here proposed class types. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Learning & Autonomous Contro

    To grasp or not to grasp: an end-to-end deep-learning approach for predicting grasping failures in soft hands

    No full text
    © 2020 IEEE. This paper tackles the challenge of predicting grasp failures in soft hands before they happen, by combining deep learning with a sensing strategy based on distributed Inertial Measurement Units. We propose two neural architectures, which we implemented and tested with an articulated soft hand-the Pisa/IIT SoftHand-and a continuously deformable soft hand-the RBO Hand. The first architecture (Classifier) implements a-posteriori detection of the failure event, serving as a test-bench to assess the possibility of extracting failure information from the discussed input signals. This network reaches up to 100% of accuracy within our experimental validation. Motivated by these results, we introduce a second architecture (Predictor), which is the main contribution of the paper. This network works on-line and takes as input a multidimensional continuum stream of raw signals coming from the Inertial Measurement Units. The network is trained to predict the occurrence in the near future of a failure event. The Predictor detects 100% of failures with both hands, with the detection happening on average 1.96 seconds before the actual failing occurs-leaving plenty of time to an hypothetical controller to react
    corecore