13 research outputs found

    A Single Nonlinear Current Control for PWM Rectifier Robust to Input Disturbances and Dynamic Loads

    Get PDF
    The requirements of PWM rectifiers for delivering power to motor drives include power factor correction and output voltage regulation even when strong variations such as voltage sags and dynamic load transients occur simultaneously. To achieve these objectives, the classic approach is to use a two-loop controller with its d-q model. In this paper, the authors propose a simplified approach to address that problem by using a feedback linearization-based nonlinear controller using only a single-loop current control and avoiding d-q modeling to reduce processing stages. To demonstrate the feasibility of this approach, several simulations are presented considering a 1.5 kW PWM rectifier

    Detección y localización de fugas en un ducto

    No full text
    Tesis de Doctorad

    Two leaks isolation in a pipeline by transient response

    No full text
    International audienceThis paper presents a method for the identi¯cation of two leaks in a pressurized sin- gle pipeline where both transient and static behavior of the °uid in leaks conditions are used to identify the parameters associated to the leaks without requirements of valve perturbation. The procedure is based on a family F of lumped parameters non linear models with same steady state behavior in leaks condition and param- eterized in terms of a known parameter zeq assuming only pressure and °ow rate measurements at the extremes of the line. This model is derived discretizing only the space variable. The key of the method is the automatic selection of the spe- ci¯c family F of models to be identi¯ed using the steady state conditions produced by the leaks. This fact reduces the research interval and the number of unknown parameters simplifying the minimization issue of the error between model and mea- sured data. Considering this family an algorithm combining transient and steady state measurements is presented. The potential of the technique and its robustness with respect to operation point changes after the leaks occurrence are illustrated by simulation using the parameters of a water pilot pipeline of 135m long installed at the UNAM in which the L2 norm of the upstream and downstream flow error is minimized

    An Improvement of Holistic Control Tuning for Reducing Energy Consumption in Seamless Transitions for a BESS Grid-Connected Converter

    No full text
    This paper presents an improvement of the tuning process of the holistic control published by the authors in previous research to achieve a seamless transition among three operation mode changes and load transients. The proposed tuning approach reveals an improvement in the energy consumption of the Battery Energy Storage System (BESS) during all operation mode transients compared to the holistic control. For this aim, the system addressed is a BESS with the capability to ride through three operation modes of interest: the grid-connected mode as an inverter, the grid-connected mode as a rectifier, and the islanded operation mode. The LCL filter design by using the Butterworth polynomial approach is presented in more detail, and its smooth inherent transient response is preserved when the tuning of the controller gains is carried out by using the same polynomial approach but now including the integral action within the Butterworth polynomial. To reveal the reduction in energy consumption, the closed-loop transfer functions of each mode were used to compare the previous holistic control and this new one named by the authors as the “improved holistic control”. The closed-loop system fulfills the frequency and voltage thresholds of the IEEE 1547-2018 standard seamlessly. The simulation runs were conducted on the PSCAD/EMTDC to evaluate the seamless transition among the operation mode changes and load steps. The experimental results in a 617 W, 120 VL−L three-phase converter prototype are included to demonstrate the validity of the improved holistic control

    Bifurcation Stability Analysis of the Synchronverter in a Microgrid

    No full text
    Synchronized converters are being studied as a viable alternative to address the transition from synchronous generation to power-electronics-based generation systems. One of the important features that make the synchronous generator an unrivaled alternative for power generation is its stability properties and inherent inertial response. This work presents a stability analysis of a synchronverter-based system conducted through the bifurcation theory to expose its stability regions in a grid-connected configuration with an aggregate load model conformed by a ZIP model and an induction motor model. One and two-parameter bifurcation diagrams on the gain, load, and Thévenin equivalent plane are computed and analyzed. All the results confirm the strong stability properties of the syncronverter. Some relevant findings are that the reduction in a droop gain or time constant results in Hopf bifurcations and inertia reduction, but the increase in the time constant leads to decoupling between the reactive and active power loops. It is also found that the increment of a specific time constant (τf>0.02 s) increases the stability region on the droop gains plane to all positive values. It is also found that a low lagging power factor reduces the feasible operating and stable operating regions. For a lagging power factor above 0.755, subcritical Hopf bifurcation disappears, and also, the feasible operating solution overlaps the stability region. Finally, it is also found how the Thévenin equivalent affects the stability and that the stability boundary is delimited by Hopf bifurcations. The bifurcation diagrams are numerically computed using XPP Auto software

    Control for Three-Phase LCL-Filter PWM Rectifier with BESS-Oriented Application

    No full text
    This paper deals with a battery energy storage system (BESS) in only one of its multiple operating modes, that is when the BESS is charging the battery bank and with the focus on the control scheme design for the BESS input stage, which is a three-phase LCL-filter PWM rectifier. The rectifier’s main requirements comprise output voltage regulation, power factor control, and low input current harmonic distortion, even in the presence of input voltage variations. Typically, these objectives are modeled by using a dq model with its corresponding two-loop controller architecture, including an outer voltage loop and a current internal loop. This paper outlines an alternative approach to tackle the problem by using not only an input–output map linearization controller, with the aim of a single-loop current control, but also by avoiding the dq modeling. In this case, the voltage is indirectly controlled by computing the current references based on the converter power balance. The mathematical model of the three-phase LCL-filter PWM rectifier is defined based on the delta connection of the filter, which accomplishes the requirements of a 100 kW BESS module. Extensive simulation results are included to confirm the performance of the proposed closed-loop control in practical applications

    Transient Stability Enhancement Using a Wide-Area Controlled SVC: An HIL Validation Approach

    No full text
    This paper presents a control scheme of a wide-area controlled static VAr compensator (WAC-SVC) and its real-time implementation in a hardware-in-the-loop (HIL) simulation scheme with three control objectives: (1) to increase the critical clearing time, (2) to damp the power oscillations, and (3) to minimize the maximum line current. The proposed control scheme considers a correction strategy to compensate the delays up to 200 ms. In addition to this, a generator tripping scheme based on synchrophasor measurements to determine the proximity to the loss of synchronism is proposed. A delay compensation algorithm based on polynomial approximations is also developed. The proposed WAC-SVC is experimentally validated using a Real-Time Digital Simulator platform (RTDS), industrial communication protocols, a commercial device for PMU-based control implementations, and digital relays with PMU capability. The real-time simulation results confirm its effectiveness and feasibility in real industrial applications. Furthermore, practical guidelines to implement this kind of control schemes are provided
    corecore