126 research outputs found

    Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data

    Full text link
    We propose a novel approach for modeling multivariate longitudinal data in the presence of unobserved heterogeneity for the analysis of the Health and Retirement Study (HRS) data. Our proposal can be cast within the framework of linear mixed models with discrete individual random intercepts; however, differently from the standard formulation, the proposed Covariance Pattern Mixture Model (CPMM) does not require the usual local independence assumption. The model is thus able to simultaneously model the heterogeneity, the association among the responses and the temporal dependence structure. We focus on the investigation of temporal patterns related to the cognitive functioning in retired American respondents. In particular, we aim to understand whether it can be affected by some individual socio-economical characteristics and whether it is possible to identify some homogenous groups of respondents that share a similar cognitive profile. An accurate description of the detected groups allows government policy interventions to be opportunely addressed. Results identify three homogenous clusters of individuals with specific cognitive functioning, consistent with the class conditional distribution of the covariates. The flexibility of CPMM allows for a different contribution of each regressor on the responses according to group membership. In so doing, the identified groups receive a global and accurate phenomenological characterization.Comment: Published at http://dx.doi.org/10.1214/15-AOAS816 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Deep Gaussian Mixture Models

    Get PDF
    Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension reduction by factor models can be applied at each layer of the architecture thus resulting in deep mixtures of factor analysers.Comment: 19 pages, 4 figure

    The Importance of Being Clustered: Uncluttering the Trends of Statistics from 1970 to 2015

    Full text link
    In this paper we retrace the recent history of statistics by analyzing all the papers published in five prestigious statistical journals since 1970, namely: Annals of Statistics, Biometrika, Journal of the American Statistical Association, Journal of the Royal Statistical Society, series B and Statistical Science. The aim is to construct a kind of "taxonomy" of the statistical papers by organizing and by clustering them in main themes. In this sense being identified in a cluster means being important enough to be uncluttered in the vast and interconnected world of the statistical research. Since the main statistical research topics naturally born, evolve or die during time, we will also develop a dynamic clustering strategy, where a group in a time period is allowed to migrate or to merge into different groups in the following one. Results show that statistics is a very dynamic and evolving science, stimulated by the rise of new research questions and types of data

    A dimensionally reduced finite mixture model for multilevel data

    Get PDF
    AbstractRecently, different mixture models have been proposed for multilevel data, generally requiring the local independence assumption. In this work, this assumption is relaxed by allowing each mixture component at the lower level of the hierarchical structure to be modeled according to a multivariate Gaussian distribution with a non-diagonal covariance matrix. For high-dimensional problems, this solution can lead to highly parameterized models. In this proposal, the trade-off between model parsimony and flexibility is governed by assuming a latent factor generative model
    • …
    corecore