11 research outputs found

    Voltage Clamp Fluorometric Measurements on a Type II Na+-coupled Pi Cotransporter: Shedding Light on Substrate Binding Order

    Get PDF
    Voltage clamp fluorometry (VCF) combines conventional two-electrode voltage clamp with fluorescence measurements to detect protein conformational changes, as sensed by a fluorophore covalently attached to the protein. We have applied VCF to a type IIb Na+-coupled phosphate cotransporter (NaPi-IIb), in which a novel cysteine was introduced in the putative third extracellular loop and expressed in Xenopus oocytes. Labeling this cysteine (S448C) with methanethiosulfonate (MTS) reagents blocked cotransport function, however previous electrophysiological studies (Lambert G., I.C. Forster, G. Stange, J. Biber, and H. Murer. 1999. J. Gen. Physiol. 114:637–651) suggest that substrate interactions with the protein can still occur, thus permitting study of a limited subset of states. After labeling S448C with the fluorophore tetramethylrhodamine MTS, we detected voltage- and substrate-dependent changes in fluorescence (ΔF), which suggested that this site lies in an environment that is affected by conformational change in the protein. ΔF was substrate dependent (no ΔF was detectable in 0 mM Na+) and showed little correlation with presteady-state charge movements, indicating that the two signals provide insight into different underlying physical processes. Interpretation of ion substitution experiments indicated that the substrate binding order differs from our previous model (Forster, I., N. Hernando, J. Biber, and H. Murer. 1998. J. Gen. Physiol. 112:1–18). In the new model, two (rather than one) Na+ ions precede Pi binding, and only the second Na+ binding transition is voltage dependent. Moreover, we show that Li+, which does not drive cotransport, interacts with the first Na+ binding transition. The results were incorporated in a new model of the transport cycle of type II Na+/Pi cotransporters, the validity of which is supported by simulations that successfully predict the voltage and substrate dependency of the experimentally determined fluorescence changes

    Cloning of a Na +

    No full text

    Steady-state kinetic characterization of the mouse B0AT1 sodium-dependent neutral amino acid transporter

    Full text link
    The members of the neurotransmitter transporter family SLC6A exhibit a high degree of structural homology; however differences arise in many aspects of their transport mechanisms. In this study we report that mouse B0AT1 (mouse Slc6a19) mediates the electrogenic transport of a broad range of neutral amino acids but not of the chemically similar substrates transported by other SLC6A family members. Cotransport of L-Leu and Na+ generates a saturable, reversible, inward current with Michaelis-Menten kinetics (Hill coefficient ~1) yielding a K0.5 for L-Leu of 1.16mM and for Na+ of 16mM at a holding potential of −50mV. Changing the membrane voltage influences both substrate binding and substrate translocation. Li+ can substitute partially for Na+ in the generation of L-Leu-evoked inward currents, whereas both Cl− and H+ concentrations influence its magnitude. The simultaneous measurement of charge translocation and L-Leu uptake in the same cell indicates that B0AT1 transports one Na+ per neutral amino acid. This appears to be accomplished by an ordered, simultaneous mechanism, with the amino acid binding prior to the Na+, followed by the simultaneous translocation of both co-substrates across the plasma membrane. From this kinetic analysis, we conclude that the relatively constant [Na+] along the renal proximal tubule both drives the uptake of neutral amino acids via B0AT1 thermodynamically and ensures that, upon binding, these are translocated efficiently into the cel

    Na +

    No full text
    corecore