7 research outputs found

    Elucidating gene expression adaptation of phylogenetically divergent coral holobionts under heat stress

    Get PDF
    As coral reefs struggle to survive under climate change, it is crucial to know whether they have the capacity to withstand changing conditions, particularly increasing seawater temperatures. Thermal tolerance requires the integrative response of the different components of the coral holobiont (coral host, algal photosymbiont, and associated microbiome). Here, using a controlled thermal stress experiment across three divergent Caribbean coral species, we attempt to dissect holobiont member metatranscriptome responses from coral taxa with different sensitivities to heat stress and use phylogenetic ANOVA to study the evolution of gene expression adaptation. We show that coral response to heat stress is a complex trait derived from multiple interactions among holobiont members. We identify host and photosymbiont genes that exhibit lineage-specific expression level adaptation and uncover potential roles for bacterial associates in supplementing the metabolic needs of the coral-photosymbiont duo during heat stress. Our results stress the importance of integrative and comparative approaches across a wide range of species to better understand coral survival under the predicted rise in sea surface temperatures

    The role of the endolithic alga Ostreobium spp. during coral bleaching recovery

    Get PDF
    In this study, we explore how the Caribbean coral Orbicella faveolata recovers after bleaching, using fragments from 13 coral colonies exposed to heat stress (32 °C) for ten days. Biological parameters and coral optical properties were monitored during and after the stress. Increases in both, the excitation pressure over photosystem II (Qm) and pigment specific absorption (a*Chla) were observed in the stressed corals, associated with reductions in light absorption at the chlorophyll a red peak (De675) and symbiont population density. All coral fragments exposed to heat stress bleached but a fraction of the stressed corals recovered after removing the stress, as indicated by the reductions in Qm and increases in De675 and the symbiont population observed. This subsample of the experimentally bleached corals also showed blooms of the endolithic algae Ostreobium spp. underneath the tissue. Using a numerical model, we quantified the amount of incident light reflected by the coral, and absorbed by the different pigmented components: symbionts, host-tissue and Ostreobium spp. Our study supports the key contribution of Ostreobium spp. blooms near the skeletal surface, to coral recovery after bleaching by reducing skeleton reflectance. Endolithic blooms can thus significantly alleviate the high light stress that affects the remaining symbionts during the stress or when the coral has achieved the bleached phenotype

    A genomic catalog of Earth’s microbiomes

    No full text
    The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.</p
    corecore