20 research outputs found

    Impaired spatial memory in mice lacking CD3ζ is associated with altered NMDA and AMPA receptors signaling independent of T-cell deficiency

    Get PDF
    International audienceThe immunoreceptor-associated protein CD3ζ is known for its role in immunity and has also been implicated in neuronal development and synaptic plasticity. However, the mechanism by which CD3ζ regulates synaptic transmission remains unclear. In this study, we showed that mice lacking CD3ζ exhibited defects in spatial learning and memory as examined by the Barnes maze and object location memory tasks. Given that peripheral T cells have been shown to support cognitive functions and neural plasticity, we generated CD3ζ(-/-) mice in which the peripheral T cells were repopulated to a normal level by syngeneic bone marrow transplantation. Using this approach, we showed that T-cell replenishment in CD3ζ(-/-) mice did not restore spatial memory defects, suggesting that the cognitive deficits in CD3ζ(-/-) mice were most likely mediated through a T-cell-independent mechanism. In support of this idea, we showed that CD3ζ proteins were localized to glutamatergic postsynaptic sites, where they interacted with the NMDAR subunit GluN2A. Loss of CD3ζ in brain decreased GluN2A-PSD95 association and GluN2A synaptic localization. This effect was accompanied by a reduced interaction of GluN2A with the key NMDAR downstream signaling protein calcium/calmodulin-dependent protein kinase II (CaMKII). Using the glycine-induced, NMDA-dependent form of chemical long-term potentiation (LTP) in cultured cortical neurons, we showed that CD3ζ was required for activity-dependent CaMKII autophosphorylation and for the synaptic recruitment of the AMPAR subunit GluA1. Together, these results support the model that the procognitive function of CD3ζ may be mediated through its involvement in the NMDAR downstream signaling pathway leading to CaMKII-dependent LTP induction

    SIRPÎł-CD47 Interaction Positively Regulates the Activation of Human T Cells in Situation of Chronic Stimulation

    No full text
    International audienceA numerous number of positive and negative signals via various molecules modulate T-cell activation. Within the various transmembrane proteins, SIRPg is of interest since it is not expressed in rodents. SIRPg interaction with CD47 is reevaluated in this study. Indeed, wshow that the anti-SIRPg mAb clone LSB2.20 previously used by others has not beenappropriately characterized. We reveal that the anti-SIRPa clone KWAR23 is a Pan antiSIRP mAb which efficiently blocks SIRPa and SIRPg interactions with CD47. We show that SIRPg expression on T cells varies with their differentiation and while being expressed on Tregs, is not implicated in their suppressive functions. SIRPg spatial reorganization atthe immune synapse is independent of its interaction with CD47. In vitro SIRPa-g/CD47 blockade with KWAR23 impairs IFN-g secretion by chronically activated T cells. In vivo in a xeno-GvHD model in NSG mice, the SIRPg/CD47 blockade with the KWAR23 significantlydelays the onset of the xeno-GvHD and deeply impairs human chimerism. In conclusion, we have shown that T-cell interaction with CD47 is of importance notably inchronic stimulation

    SIRP α/CD 47 axis controls the maintenance of transplant tolerance sustained by myeloid‐derived suppressor cells

    No full text
    International audienceMyeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses. Interaction of SIRP alpha (SIRPα), expressed by myeloid cells, with the ubiquitous receptor CD47 is an important immune checkpoint of the innate response regulating macrophages and dendritic cells functions. We previously described that MDSC expressing SIRPα accumulated after transplantation and maintained kidney allograft tolerance. However, the role of the SIRPα/CD47 axis on MDSC function remained unknown. Here, we found that blocking SIRPα or CD47 with monoclonal antibodies (mAbs) induced differentiation of MDSC into myeloid cells overexpressing MHC class II, CD86 costimulatory molecule and increased secretion of macrophage-recruiting chemokines (eg, MCP-1). Using a model of long-term kidney allograft tolerance sustained by MDSC, we observed that administration of blocking anti-SIRPα or CD47 mAbs induced graft dysfunction and rejection. Loss of tolerance came along with significant decrease of MDSC and increase in MCP-1 concentration in the periphery. Graft histological and transcriptomic analyses revealed an inflammatory (M1) macrophagic signature at rejection associated with overexpression of MCP-1 mRNA and protein in the graft. These findings indicate that the SIRPα-CD47 axis regulates the immature phenotype and chemokine secretion of MDSC and contributes to the induction and the active maintenance of peripheral acquired immune tolerance

    Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    Get PDF
    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD

    Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases

    No full text
    International audienceThe generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner

    First-in-Human Study in Healthy Subjects with FR104, a Pegylated Monoclonal Antibody Fragment Antagonist of CD28

    No full text
    International audienceFR104 is a monovalent pegylated Fab9 Ab, antagonist of CD28, under development for treatment of transplant rejection and autoimmune diseases. In contrast to CD80/86 antagonists (CTLA4-Ig), FR104 selectively blunts CD28 costimulation while sparing CTLA-4 and PD-L1 coinhibitory signals. In the present work, FR104 has been evaluated in a ïŹrst-in-human study to evaluate the safety, pharmacokinetics, pharmacodynamics, and potency of i.v. administrations in healthy subjects. Sixty-four subjects were randomly assigned to four single ascending dose groups, two double dose groups and four single ascending dose groups challenged with keyhole limpet hemocyanin. Subjects were followed up over a maximum of 113 d. Overall, the pharmacokinetics of FR104 after a single and double infusions was approximately linear at doses ‡0.200 mg/kg. CD28 receptor occupancy by FR104 was saturated at the ïŹrst sampling time point (0.5 h) at doses above 0.02 mg/kg and returned to 50% in a dose-dependent manner, by day 15 (0.020 mg/kg) to 85 (1.500 mg/kg). FR104 was well tolerated, with no evidence of cytokine-release syndrome and no impact on blood lymphocyte subsets. Inhibition of anti-keyhole limpet hemocyanin Ab response was dose-dependent in FR104 recipients and was already apparent at a dose of 0.02 mg/kg. Abs to FR104 were detected in 22/46 (48%) of FR104 recipients and only 1/46 (2.2%) was detected during drug exposure. In conclusion, selective blockade of CD28 with FR104 was safe and well tolerated at the doses tested. The observed immunosuppressive activity indicated that FR104 has potential to show clinical activity in the treatment of immune-mediated diseases

    CLEC-1 is a death sensor that limits antigen cross-presentation by dendritic cells and represents a target for cancer immunotherapy

    No full text
    International audienceTumors exploit numerous immune checkpoints, including those deployed by myeloid cells to curtail antitumor immunity. Here, we show that the C-type lectin receptor CLEC-1 expressed by myeloid cells senses dead cells killed by programmed necrosis. Moreover, we identified Tripartite Motif Containing 21 (TRIM21) as an endogenous ligand overexpressed in various cancers. We observed that the combination of CLEC-1 blockade with chemotherapy prolonged mouse survival in tumor models. Loss of CLEC-1 reduced the accumulation of immunosuppressive myeloid cells in tumors and invigorated the activation state of dendritic cells (DCs), thereby increasing T cell responses. Mechanistically, we found that the absence of CLEC-1 increased the cross-presentation of dead cellassociated antigens by conventional type-1 DCs. We identified antihuman CLEC-1 antagonist antibodies able to enhance antitumor immunity in CLEC-1 humanized mice. Together, our results demonstrate that CLEC-1 acts as an immune checkpoint in myeloid cells and support CLEC-1 as a novel target for cancer immunotherapy

    IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates

    No full text
    Chronic inflammation often involves reactivation of memory adaptive immune. Here the authors show, using non-human primate models, that a single dose of anti-IL-7 receptor monoclonal antibody that exhibits antagonist but not agonist properties can reduce the frequency of antigen-specific T cell to help repress chronic skin inflammation
    corecore