32 research outputs found

    Nanoindentation and Plasticity in Nanocrystalline NI Nanowires: A Case Study in Size Effect Mitigation

    Get PDF
    We examine the processes of spherical indentation and tension in Ni nanowires and thin films containing random distributions of nanoscale grains by molecular dynamics simulations. It is shown that the resistance to nanoindentation of nanocrystalline Ni nanowires with diameters of 12 and 30 nm tends not to depend on the wire diameter and free surfaces, contrary to nanoindentation in single-crystalline nanowires. Accommodation of plastic deformation by grain boundary sliding suggests a mitigation strategy for sample boundary effects in nanoscale plasticity

    Heating Element Including Carbon Nanotube (CNT) Layer

    Get PDF
    Apparatus , materials , and techniques and techniques herein can include providing a deposited layer comprising a com posite material including carbon nanotubes ( CNTs ) . Accord ing to various examples , the composite can be applied to a substrate such as using a solution containing CNTs and other constituents such as sulfur . The solution can be spray applied to a substrate , or spin - coated upon a substrate , such as to provide a uniform , conductive , and optically - transpar ent film layer . In one application , such a film layer can be clad or otherwise assembled in a stack - up including a substrate and cover layer ( e . g . , glass layers ) , such as to provide a transparent assembly . Such an assembly can include a portion of a window , such as a windscreen for a vehicle , where the CNT material can provide a conduction medium for Joule heating

    Mechanical and Electrical Characterization of Carbon Fiber/Bucky Paper/Zinc Oxide Hybrid Composites

    Get PDF
    The quest for multifunctional carbon fiber reinforced composites (CFRPs) expedited the use of several nano reinforcements such as zinc oxide nanorods (ZnO) and carbon nanotubes (CNTs). Zinc oxide is a semi-conductor with good piezoelectric and pyroelectric properties. These properties could be transmitted to CFRPs when a nanophase of ZnO is embedded within CFRPs. In lieu of ZnO nanorods, Bucky paper comprising mat of CNTs could be sandwiched in-between composite laminae to construct a functionally graded composite with enhanced electrical conductivities. In this study, different configurations of hybrid composites based on carbon fibers with different combinations of ZnO nanorods and Bucky paper were fabricated. The composites were tested mechanically via tensile and dynamic mechanical analysis (DMA) tests to examine the effect of the different nanoadditives on the stiffness, strength and the damping performance of the hybrid composites. Electrical resistivities of the hybrid composites were probed to examine the contributions of the different nanoadditives. The results suggest that there are certain hybrid composite combinations that could lead to the development of highly multifunctional composites with better strength, stiffness, damping and electrical conductivity

    Grain boundary structure evolution in nanocrystalline Al by nanoindentation simulations

    No full text
    The nanoindentation of a columnar grain boundary (GB) network in nanocrystalline Al has been examined by atomistic simulation. The goal of this study was to gain fundamental understanding on the relationship between structure evolution at GBs and incipient plasticity for indenter tips significantly larger than the average grain size. The nanoindentation simulations were performed by quasicontinuum method at zero temperature. A GB network made of vicinal and high-angle \u3c110\u3e tilt GBs was produced by generating randomly-oriented 5-nm grains at the surface of a 200 nm-thick film of Al. The major findings of this investigation are that (1) nanocrystalline GB networks profoundly impact on the nanoindentation response and cause significant softening effects at the tip/surface interface; (2) GB movement and deformation twins are found to be the predominant deformation modes in columnar Al, in association with shear band formation by GB sliding and intragranular slip, and crystal growth by grain rotation and coalescence; and (3) the cooperative processes during plastic deformation are dictated by the atomic-level redistribution of principal shear stresses in the material

    Multiscale Modeling of Contact-induced Plasticity in Nanocrystalline Metals

    No full text
    We examine the processes of spherical indentation and tension in Ni nanowires and thin films containing random distributions of nanoscale grains by molecular dynamics simulations. It is shown that the resistance to nanoindentation of nanocrystalline Ni nanowires with diameters of 12 and 30 nm tends not to depend on the wire diameter and free surfaces, contrary to nanoindentation in single-crystalline nanowires. Accommodation of plastic deformation by grain boundary sliding suggests a mitigation strategy for sample boundary effects in nanoscale plasticity

    Nanoindentation and Plasticity in Nanocrystalline NI Nanowires: A Case Study in Size Effect Mitigation

    No full text
    We examine the processes of spherical indentation and tension in Ni nanowires and thin films containing random distributions of nanoscale grains by molecular dynamics simulations. It is shown that the resistance to nanoindentation of nanocrystalline Ni nanowires with diameters of 12 and 30 nm tends not to depend on the wire diameter and free surfaces, contrary to nanoindentation in single-crystalline nanowires. Accommodation of plastic deformation by grain boundary sliding suggests a mitigation strategy for sample boundary effects in nanoscale plasticity

    Molecular dynamics study of crystal plasticity during nanoindentation in Ni nanowires

    Get PDF
    Molecular dynamics simulations were performed to gain fundamental insight into crystal plasticity, and its size effects in nanowires deformed by spherical indentation. This work focused on \u3c111\u3e-oriented single-crystal, defect-free Ni nanowires of cylindrical shape with diameters of 12 and 30 nm. The indentation of thin films was also comparatively studied to characterize the influence of free surfaces in the emission and absorption of lattice dislocations in single-crystal Ni. All of the simulations were conducted at 300 K by using a virtual spherical indenter of 18 nm in diameter with a displacement rate of 1 m·s−1. No significant effect of sample size was observed on the elastic response and mean contact pressure at yield point in both thin films and nanowires. In the plastic regime, a constant hardness of 21 GPa was found in thin films for penetration depths larger than 0.8 nm, irrespective of variations in film thickness. The major finding of this work is that the hardness of the nanowires decreases as the sample diameter decreases, causing important softening effects in the smaller nanowire during indentation. The interactions of prismatic loops and dislocations, which are emitted beneath the contact tip, with free boundaries are shown to be the main factor for the size dependence of hardness in single-crystal Ni nanowires during indentation

    Atomic mechanism of shear localization during indentation

    No full text
    Shear localization is an important mode of deformation in nanocrystalline metals. However, it is very difficult to verify the existence of local shear planes in nanocrystalline metals experimentally. Sharp indentation techniques may provide novel opportunities to investigate the effect of shear localization at different length scales, but the relationship between indentation response and atomic-level shear band formation has not been fully addressed. This paper describes an effort to provide direct insight on the mechanism of shear localization during indentation of nanocrystalline metals from atomistic simulations. Molecular statics is performed with the quasi-continuum method to simulate the indentation of single crystal and nanocrystalline Al with a sharp cylindrical probe. In the nanocrystalline regime, two grain sizes are investigated, 5 nm and 10 nm. We find that the indentation of nanocrystalline metals is characterized by serrated plastic flow. This effect seems to be independent of the grain size. Serration in nanocrystalline metals is found to be associated with the formation of shear bands by sliding of aligned interfaces and intragranular slip, which results in deformation twinning

    Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum

    No full text
    Atomistic simulations using the quasicontinuum method are performed to examine the mechanical behavior and underlying mechanisms of surface plasticity in nanocrystalline aluminum with a grain diameter of 7 nm deformed under wedge-like cylindrical contact. Two embedded-atom method potentials for Al, which mostly differ in their prediction of the generalized stacking and planar fault energies, and grain boundary (GB) energies, are used and characterized. The simulations are conducted on a randomly oriented microstructure with 〈1 1 0〉-tilt GBs. The contact pressure–displacement curves are found to display significant flow serration. We show that this effect is associated with highly localized shear deformation resulting from one of three possible mechanisms: (1) the emission of partial dislocations and twins emanating from the contact interface and GBs, along with their propagation and intersection through intragranular slip, (2) GB sliding and grain rotation and (3) stress-driven GB migration coupled to shear deformation. Marked differences in mechanical behavior are observed, however, as a function of the interatomic potential. We find that the propensity to localize the plastic deformation at GBs via interface sliding and coupled GB migration is greater in the Al material presenting the lowest predicted stacking fault energy and GB energy. This finding is qualitatively interpreted on the basis of impurity effects on plastic flow and GB-mediated deformation processes in Al

    Nanoindentation and plasticity in nanocrystalline Ni nanowires: A case study in size effect mitigation

    No full text
    We examine the processes of spherical indentation and tension in Ni nanowires and thin films containing random distributions of nanoscale grains by molecular dynamics simulations. It is shown that the resistance to nanoindentation of nanocrystalline Ni nanowires with diameters of 12 and 30 nm tends not to depend on the wire diameter and free surfaces, contrary to nanoindentation in single-crystalline nanowires. Accommodation of plastic deformation by grain boundary sliding suggests a mitigation strategy for sample boundary effects in nanoscale plasticity
    corecore