6 research outputs found

    Effects of the Administration of High-Dose Interleukin-2 on Immunoregulatory Cell Subsets in Patients with Advanced Melanoma and Renal Cell Cancer

    No full text
    PURPOSE: High-dose recombinant human interleukin-2 (IL-2) therapy is of clinical benefit in a subset of patients with advanced melanoma and renal cell cancer. Although IL-2 is well known as a T-cell growth factor, its potential in vivo effects on human immunoregulatory cell subsets are largely unexplored. EXPERIMENTAL DESIGN: Here, we studied the effects of high-dose IL-2 therapy on circulating dendritic cell subsets (DC), CD1d-reactive invariant natural killer T cells (iNKT), and CD4(+)CD25(+) regulatory-type T cells. RESULTS: The frequency of both circulating myeloid DC1 and plasmacytoid DC decreased during high-dose IL-2 treatment. Of these, only a significant fraction of myeloid DC expressed CD1d. Although the proportion of Th1-type CD4(-) iNKT increased, similarly to DC subsets, the total frequency of iNKT decreased during high-dose IL-2 treatment. In contrast, the frequency of CD4(+)CD25(+) T cells, including CD4(+)Foxp3(+) T cells, which have been reported to suppress antitumor immune responses, increased during high-dose IL-2 therapy. However, there was little, if any, change of expression of GITR, CD30, or CTLA-4 on CD4(+)CD25(+) T cells in response to IL-2. Functionally, patient CD25(+) T cells at their peak level (immediately after the first cycle of high-dose IL-2) were less suppressive than healthy donor CD25(+) T cells and mostly failed to Th2 polarize iNKT. CONCLUSIONS: Our data show that there are reciprocal quantitative and qualitative alterations of immunoregulatory cell subsets with opposing functions during treatment with high-dose IL-2, some of which may compromise the establishment of effective antitumor immune responses

    Effects of the administration of high-dose interleukin-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer

    No full text
    PURPOSE: High-dose recombinant human interleukin-2 (IL-2) therapy is of clinical benefit in a subset of patients with advanced melanoma and renal cell cancer. Although IL-2 is well known as a T-cell growth factor, its potential in vivo effects on human immunoregulatory cell subsets are largely unexplored. EXPERIMENTAL DESIGN: Here, we studied the effects of high-dose IL-2 therapy on circulating dendritic cell subsets (DC), CD1d-reactive invariant natural killer T cells (iNKT), and CD4(+)CD25(+) regulatory-type T cells. RESULTS: The frequency of both circulating myeloid DC1 and plasmacytoid DC decreased during high-dose IL-2 treatment. Of these, only a significant fraction of myeloid DC expressed CD1d. Although the proportion of Th1-type CD4(-) iNKT increased, similarly to DC subsets, the total frequency of iNKT decreased during high-dose IL-2 treatment. In contrast, the frequency of CD4(+)CD25(+) T cells, including CD4(+)Foxp3(+) T cells, which have been reported to suppress antitumor immune responses, increased during high-dose IL-2 therapy. However, there was little, if any, change of expression of GITR, CD30, or CTLA-4 on CD4(+)CD25(+) T cells in response to IL-2. Functionally, patient CD25(+) T cells at their peak level (immediately after the first cycle of high-dose IL-2) were less suppressive than healthy donor CD25(+) T cells and mostly failed to Th2 polarize iNKT. CONCLUSIONS: Our data show that there are reciprocal quantitative and qualitative alterations of immunoregulatory cell subsets with opposing functions during treatment with high-dose IL-2, some of which may compromise the establishment of effective antitumor immune responses

    Sermaye Piyasası Kurulu’nun ‘Kurumsal Yönetim’ Konulu Tebliğleri Ile Ilgili Genel Değerlendirme Ve Yorum (An Assessment of the Recent Legal Reforms Concerning 'Corporate Governance' Introduced by the Capital Market Boards of Turkey)

    No full text
    corecore