5 research outputs found

    Image Charge Effects on the Formation of Pickering Emulsions

    No full text
    Vigorous mixing of an aqueous particle dispersion with oil usually produces a particle-stabilized emulsion (a “Pickering emulsion”), the longevity of which depends on the particles’ wetting properties. A known exception occurs when particles fail to adsorb to the oil–water interface created during mixing because of a strong repulsion between charges on the particle surface and similar charges on the oil–water interface; in this case, no Pickering emulsion is formed. Here, we present experimental evidence that the rarely considered electrostatic image force can cause a much bigger hindrance to particle adsorption and prevent the formation of Pickering emulsions even when the particle interaction with the interface charge is attractive. A simple theoretical estimate confirms the observed magnitude of this effect and points at an important limitation of Pickering emulsification, a technology with widespread industrial applications and increasing popularity in materials research and development

    Poly(3-hexylthiophene) Nanotube Array Surfaces with Tunable Wetting and Contact Thermal Energy Transport

    No full text
    Solution casting using a sacrificial template is a simple technique to fabricate vertical arrays of polymer nanotubes. However, because of their close proximity and high aspect ratios, large capillary forces cause nanotubes to cluster as the array dries; researchers often use special drying techniques to avoid this clustering. Here, we exploit the clustering of regioregular poly(3-hexylthiophene) (rr-P3HT) nanotubes in a unique template etching process to create surfaces that exhibit tunable wetting and contact thermal energy transport. Vertical arrays of rr-P3HT nanotubes are cast from solution in nanoscale alumina templates, and a solution etching process is used to partially release the nanotubes from the template. The clustering of rr-P3HT nanotube tips upon template etching produces hierarchical surface structuring with a distinct pattern of interconnected ridges, and the spacing between the ridges increases with increased template etch times. These changes in morphology cause the water contact angle to increase from 141° to 168° as the etch time is increased from 4 to 12 min. When assembled into an interface, the morphological changes cause the thermal contact resistance of the vertical rr-P3HT nanotube arrays to increase linearly at a rate of approximately 6 mm<sup>2</sup>·K/W per 2 min etch interval (after 6 min of etching is surpassed). The effective thermal conductivity of the rr-P3HT nanotube arrays is 1 ± 0.2 W/mK independent of the etch time, which is approximately 5 times higher than the bulk rr-P3HT film value

    High Thermal and Electrical Conductivity of Template Fabricated P3HT/MWCNT Composite Nanofibers

    No full text
    Nanoporous alumina membranes are filled with multiwalled carbon nanotubes (MWCNTs) and then poly­(3-hexylthiophene-2,5-diyl) (P3HT) melt, resulting in nanofibers with nanoconfinement induced coalignment of both MWCNT and polymer chains. The simple sonication process proposed here can achieve vertically aligned arrays of P3HT/MWCNT composite nanofibers with 3 wt % to 55 wt % MWCNT content, measured using thermogravimetric methods. Electrical and thermal transport in the composite nanofibers improves drastically with increasing carbon nanotube content where nanofiber thermal conductivity peaks at 4.7 ± 1.1 Wm<sup>–1</sup>K<sup>–1</sup> for 24 wt % MWCNT and electrical percolation occurs once 20 wt % MWCNT content is surpassed. This is the first report of the thermal conductivity of template fabricated composite nanofibers and the first proposed processing technique to enable template fabrication of composite nanofibers with high filler content and long aspect ratio fillers, where enhanced properties can also be realized on the macroscale due to vertical alignment of the nanofibers. These materials are interesting for thermal management applications due to their high thermal conductivity and temperature stability

    Enhanced Molecular Order in Polythiophene Films Electropolymerized in a Mixed Electrolyte of Anionic Surfactants and Boron Trifluoride Diethyl Etherate

    No full text
    We synthesized polythiophene (PTh) films on stainless steel electrodes using chronoamperometry in boron trifluoride diethyl etherate (BFEE) electrolyte with anionic surfactants. The presence of the anionic surfactants in BFEE reduced the oxidation potential of thiophene and increased the oxidation current during electropolymerization. The measured in-plane electrical conductivity of PTh films synthesized in the presence of anionic surfactants was up to 300% higher than that of films synthesized under similar conditions without surfactants. The observed increase in conductivity reflects the improved order and packing of polymer chains revealed by X-ray diffraction

    Green Light-Triggered Photocatalytic Anticancer Activity of Terpyridine-Based Ru(II) Photocatalysts

    No full text
    The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4′-phenyl-2,2′:6′,2″-terpyridine, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440–600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 μM and 88, respectively, under white light irradiation and ca. 1.9 μM and 35 under green light irradiation against HeLa cells. The complexes (Ru1–Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 μM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects
    corecore