16 research outputs found

    Frequent 4EBP1 Amplification Induces Synthetic Dependence on FGFR Signaling in Cancer

    Get PDF
    Simple Summary Our work establishes that amplification of 4EBP1, as a part of Chr. 8p11, creates a synthetic dependency on FGFR1 signaling in cancer. 4EBP1 is phosphorylated by FGFR1 and PI3K signaling, and accordingly cancer with 4EBP1-FGFR1 amplification is more sensitive to FGFR1 and PI3K inhibition due to inhibition of 4EBP1 phosphorylation. Moreover, we characterize the translational targets of 4EBP1 and identify that 4EBP1 specifically regulates the translation of genes involved in insulin signaling, glucose metabolism, and the inositol pathway that plays a role in cancer progression. The eIF4E translation initiation factor has oncogenic properties and concordantly, the inhibitory eIF4E-binding protein (4EBP1) is considered a tumor suppressor. The exact molecular effects of 4EBP1 activation in cancer are still unknown. Surprisingly, 4EBP1 is a target of genomic copy number gains (Chr. 8p11) in breast and lung cancer. We noticed that 4EBP1 gains are genetically linked to gains in neighboring genes, including WHSC1L1 and FGFR1. Our results show that FGFR1 gains act to attenuate the function of 4EBP1 via PI3K-mediated phosphorylation at Thr37/46, Ser65, and Thr70 sites. This implies that not 4EBP1 but instead FGFR1 is the genetic target of Chr. 8p11 gains in breast and lung cancer. Accordingly, these tumors show increased sensitivity to FGFR1 and PI3K inhibition, and this is a therapeutic vulnerability through restoring the tumor-suppressive function of 4EBP1. Ribosome profiling reveals genes involved in insulin signaling, glucose metabolism, and the inositol pathway to be the relevant translational targets of 4EBP1. These mRNAs are among the top 200 translation targets and are highly enriched for structure and sequence motifs in their 5 ' UTR, which depends on the 4EBP1-EIF4E activity. In summary, we identified the translational targets of 4EBP1-EIF4E that facilitate the tumor suppressor function of 4EBP1 in cancer

    A Re-Examination of Global Suppression of RNA Interference by HIV-1

    Get PDF
    The nature of the interaction between replicating HIV-1 and the cellular RNAi pathway has been controversial, but it is clear that it can be complex and multifaceted. It has been proposed that the interaction is bi-directional, whereby cellular silencing pathways can restrict HIV-1 replication, and in turn, HIV-1 can suppress silencing pathways. Overall suppression of RNAi has been suggested to occur via direct binding and inhibition of Dicer by the HIV-1 Tat protein or through sequestration of TRBP, a Dicer co-factor, by the structured TAR element of HIV-1 transcripts. The role of Tat as an inhibitor of Dicer has been questioned and our results support and extend the conclusion that Tat does not inhibit RNAi that is mediated by either exogenous or endogenous miRNAs. Similarly, we find no suppression of silencing pathways in cells with replicating virus, suggesting that viral products such as the TAR RNA elements also do not reduce the efficacy of cellular RNA silencing. However, knockdown of Dicer does allow increased viral replication and this occurs at a post-transcriptional level. These results support the idea that although individual miRNAs can act to restrict HIV-1 replication, the virus does not counter these effects through a global suppression of RNAi synthesis or processing

    RNA silencing as a cellular defense against HIV‐1 infection: progress and issues

    No full text
    MicroRNAs (miRNAs) are known to have a role in gene regulation that is closely integrated into the pathways that control virtually all fundamental cell processes of growth, differentiation, metabolism, and death. Whether silencing RNAs and the cellular pathways that generate them are also used in antiviral defense in higher eukaryotes, as they are in plants and lower eukaryotes, has been the subject of much study. Results to date point to a complex interplay between viruses and vertebrate host cells that can vary considerably among different viruses. Here, we review current knowledge regarding interactions between HIV‐1 and host cell RNA silencing mechanisms. Important questions in this field remain unresolved, including whether HIV‐1 itself encodes small silencing RNAs that might either promote or repress its replication, whether host cell miRNAs can directly target viral transcripts or can alter the course of infection indirectly through effects on cellular genes necessary for viral replication, and whether HIV‐1 produces proteins or RNAs that suppress the host‐silencing pathway. We summarize evidence and controversies related to the potential role of RNA silencing pathways as a defense against HIV‐1 infection.—Sanghvi, V. R., Steel, L. F. RNA silencing as a cellular defense against HIV‐1 infection: progress and issues. FASEB J. 26, 3937–3945 (2012). www.fasebj.or

    The Cellular TAR RNA Binding Protein, TRBP, Promotes HIV-1 Replication Primarily by Inhibiting the Activation of Double-Stranded RNA-Dependent Kinase PKR▿

    No full text
    The TAR RNA binding protein, TRBP, is a cellular double-stranded RNA (dsRNA) binding protein that can promote the replication of HIV-1 through interactions with the viral TAR element as well as with cellular proteins that affect the efficiency of translation of viral transcripts. The structured TAR element, present on all viral transcripts, can impede efficient translation either by sterically blocking access of translation initiation factors to the 5′-cap or by activating the dsRNA-dependent kinase, PKR. Several mechanisms by which TRBP can facilitate translation of viral transcripts have been proposed, including the binding and unwinding of TAR and the suppression of PKR activation. Further, TRBP has been identified as a cofactor of Dicer in the processing of microRNAs (miRNAs), and sequestration of TRBP by TAR in infected cells has been proposed as a viral countermeasure to potential host cell RNA interference-based antiviral activities. Here, we have addressed the relative importance of these various roles for TRBP in HIV-1 replication. Using Jurkat T cells, primary human CD4+ T cells, and additional cultured cell lines, we show that depletion of TRBP has no effect on viral replication when PKR activation is otherwise blocked. Moreover, the presence of TAR-containing mRNAs does not affect the efficacy of cellular miRNA silencing pathways. These results establish that TRBP, when expressed at physiological levels, promotes HIV-1 replication mainly by suppressing the PKR-mediated antiviral response, while its contribution to HIV-1 replication through PKR-independent pathways is minimal

    NRF2 Activation Confers Resistance to eIF4A Inhibitors in Cancer Therapy

    No full text
    Inhibition of the eIF4A RNA helicase with silvestrol and related compounds is emerging as a powerful anti-cancer strategy. We find that a synthetic silvestrol analogue (CR-1-31 B) has nanomolar activity across many cancer cell lines. It is especially active against aggressive MYC+/BCL2+ B cell lymphomas and this likely reflects the eIF4A-dependent translation of both MYC and BCL2. We performed a genome-wide CRISPR/Cas9 screen and identified mechanisms of resistance to this new class of therapeutics. We identify three negative NRF2 regulators (KEAP1, CUL3, CAND1) whose inactivation is sufficient to cause CR1-31-B resistance. NRF2 is known to alter the oxidation state of translation factors and cause a broad increase in protein production. We find that NRF2 activation particularly increases the translation of some eIF4A-dependent mRNAs and restores MYC and BCL2 production. We know that NRF2 functions depend on removal of sugar adducts by the frutosamine-3-kinase (FN3K). Accordingly, loss of FN3K results in NRF2 hyper-glycation and inactivation and resensitizes cancer cells to eIF4A inhibition. Together, our findings implicate NRF2 in the translation of eIF4A-dependent mRNAs and point to FN3K inhibition as a new strategy to block NRF2 functions in cancer

    Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia

    No full text
    The posttranscriptional control of gene expression by microRNAs (miRNAs) is highly redundant, and compensatory effects limit the consequences of the inactivation of individual miRNAs. This implies that only a few miRNAs can function as effective tumor suppressors. It is also the basis of our strategy to define functionally relevant miRNA target genes that are not under redundant control by other miRNAs. We identified a functionally interconnected group of miRNAs that exhibited a reduced abundance in leukemia cells from patients with T cell acute lymphoblastic leukemia (T-ALL). To pinpoint relevant target genes, we applied a machine learning approach to eliminate genes that were subject to redundant miRNA-mediated control and to identify those genes that were exclusively targeted by tumor-suppressive miRNAs. This strategy revealed the convergence of a small group of tumor suppressor miRNAs on the Myb oncogene, as well as their effects on HBP1, which encodes a transcription factor. The expression of both genes was increased in T-ALL patient samples, and each gene promoted the progression of T-ALL in mice. Hence, our systematic analysis of tumor suppressor miRNA action identified a widespread mechanism of oncogene activation in T-ALL
    corecore