96 research outputs found

    White matter DNA methylation profiling reveals deregulation of HIP1, LMAN2, MOBP, and other loci in multiple system atrophy

    Get PDF
    Multiple system atrophy (MSA) is a fatal late-onset neurodegenerative disease. Although presenting with distinct pathological hallmarks, which in MSA consist of glial cytoplasmic inclusions (GCIs) containing fbrillar α-synuclein in oligodendrocytes, both MSA and Parkinson’s disease are α-synucleinopathies. Pathologically, MSA can be categorized into striatonigral degeneration (SND), olivopontocerebellar atrophy (OPCA) or mixed subtypes. Despite extensive research, the regional vulnerability of the brain to MSA pathology remains poorly understood. Genetic, epigenetic and environmental factors have been proposed to explain which brain regions are afected by MSA, and to what extent. Here, we explored for the frst time epigenetic changes in post-mortem brain tissue from MSA cases. We conducted a case–control study, and profled DNA methylation in white mater from three brain regions characterized by severe-to-mild GCIs burden in the MSA mixed subtype (cerebellum, frontal lobe and occipital lobe). Our genome-wide approach using Illumina MethylationEPIC arrays and a powerful cross-region analysis identifed 157 CpG sites and 79 genomic regions where DNA methylation was signifcantly altered in the MSA mixed-subtype cases. HIP1, LMAN2 and MOBP were amongst the most diferentially methylated loci. We replicated these fndings in an independent cohort and further demonstrated that DNA methylation profles were perturbed in MSA mixed subtype, and also to variable degrees in the other pathological subtypes (OPCA and SND). Finally, our comethylation network analysis revealed several molecular signatures (modules) signifcantly associated with MSA (disease status and pathological subtypes), and with neurodegeneration in the cerebellum. Importantly, the co-methylation module having the strongest association with MSA included a CpG in SNCA, the gene encoding α-synuclein. Altogether, our results provide the frst evidence for DNA methylation changes contributing to the molecular processes altered in MSA, some of which are shared with other neurodegenerative diseases, and highlight potential novel routes for diagnosis and therapeutic interventions

    MOBP and HIP1 in multiple system atrophy: new α‐synuclein partners in glial cytoplasmic inclusions implicated in the disease pathogenesis

    Get PDF
    Aims: MSA is a fatal neurodegenerative disease. Similar to Parkinson’s disease (PD), MSA is an α‐synucleinopathy, and its pathological hallmark consists of glial cytoplasmic inclusions (GCIs) containing α‐synuclein in oligodendrocytes. We previously identified consistent changes in MOBP and HIP1 DNA methylation status in MSA. We hypothesized that if differential DNA methylation at these loci is mechanistically relevant for MSA, it should have downstream consequences on gene regulation. / Methods: We investigated the relationship between MOBP and HIP1 DNA methylation and mRNA levels in cerebellar white matter from MSA and healthy controls. Additionally, we analysed protein expression using western blotting, immunohistochemistry and proximity ligation assays. / Results: We found decreased MOBP mRNA levels significantly correlated with increased DNA methylation in MSA. For HIP1, we found a distinct relationship between DNA methylation and gene expression levels in MSA compared to healthy controls, suggesting this locus may be subjected to epigenetic remodelling in MSA. Although soluble protein levels for MOBP and HIP1 in cerebellar white matter were not significantly different between MSA cases and controls, we found striking differences between MSA and other neurodegenerative diseases, including PD and Huntington’s disease. We also found that MOBP and HIP1 are mislocalized into the GCIs in MSA, where they appear to interact with α‐synuclein. / Conclusions: This study supports a role for DNA methylation in downregulation of MOBP mRNA in MSA. Most importantly, the identification of MOBP and HIP1 as new constituents of GCIs emphasizes the relevance of these two loci to the pathogenesis of MSA

    The Synovial Sarcoma-Associated SYT-SSX2 Oncogene Antagonizes the Polycomb Complex Protein Bmi1

    Get PDF
    This study demonstrates deregulation of polycomb activity by the synovial sarcoma-associated SYT-SSX2 oncogene, also known as SS18-SSX2. Synovial sarcoma is a soft tissue cancer associated with a recurrent t(X:18) translocation event that generates one of two fusion proteins, SYT-SSX1 or SYT-SSX2. The role of the translocation products in this disease is poorly understood. We present evidence that the SYT-SSX2 fusion protein interacts with the polycomb repressive complex and modulates its gene silencing activity. SYT-SSX2 causes destabilization of the polycomb subunit Bmi1, resulting in impairment of polycomb-associated histone H2A ubiquitination and reactivation of polycomb target genes. Silencing by polycomb complexes plays a vital role in numerous physiological processes. In recent years, numerous reports have implicated gain of polycomb silencing function in several cancers. This study provides evidence that, in the appropriate context, expression of the SYT-SSX2 oncogene leads to loss of polycomb function. It challenges the notion that cancer is solely associated with an increase in polycomb function and suggests that any imbalance in polycomb activity could drive the cell toward oncogenesis. These findings provide a mechanism by which the SYT-SSX2 chimera may contribute to synovial sarcoma pathogenesis

    Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci

    Get PDF
    BACKGROUND: The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider promoter conservation and positional conservation as indicators of functional commonality. RESULTS: We identify 665 conserved lncRNA promoters in mouse and human that are preserved in genomic position relative to orthologous coding genes. These positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are coexpressed in a tissue-specific manner. Over half of positionally conserved RNAs in this set are linked to chromatin organization structures, overlapping binding sites for the CTCF chromatin organiser and located at chromatin loop anchor points and borders of topologically associating domains (TADs). We define these RNAs as topological anchor point RNAs (tapRNAs). Characterization of these noncoding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other’s expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Furthermore, we find that tapRNAs contain conserved sequence domains that are enriched in motifs for zinc finger domain-containing RNA-binding proteins and transcription factors, whose binding sites are found mutated in cancers. CONCLUSIONS: This work leverages positional conservation to identify lncRNAs with potential importance in genome organization, development and disease. The evidence that many developmental transcription factors are physically and functionally connected to lncRNAs represents an exciting stepping-stone to further our understanding of genome regulation

    SETDB1 Is Involved in Postembryonic DNA Methylation and Gene Silencing in Drosophila

    Get PDF
    DNA methylation is fundamental for the stability and activity of genomes. Drosophila melanogaster and vertebrates establish a global DNA methylation pattern of their genome during early embryogenesis. Large-scale analyses of DNA methylation patterns have uncovered revealed that DNA methylation patterns are dynamic rather than static and change in a gene-specific fashion during development and in diseased cells. However, the factors and mechanisms involved in dynamic, postembryonic DNA methylation remain unclear. Methylation of lysine 9 in histone H3 (H3-K9) by members of the Su(var)3–9 family of histone methyltransferases (HMTs) triggers embryonic DNA methylation in Arthropods and Chordates. Here, we demonstrate that Drosophila SETDB1 (dSETDB1) can mediate DNA methylation and silencing of genes and retrotransposons. We found that dSETDB1 tri-methylates H3-K9 and binds methylated CpA motifs. Tri-methylation of H3-K9 by dSETDB1 mediates recruitment of DNA methyltransferase 2 (Dnmt2) and Su(var)205, the Drosophila ortholog of mammalian “Heterochromatin Protein 1”, to target genes for dSETDB1. By enlisting Dnmt2 and Su(var)205, dSETDB1 triggers DNA methylation and silencing of genes and retrotransposons in Drosophila cells. DSETDB1 is involved in postembryonic DNA methylation and silencing of Rt1b{} retrotransposons and the tumor suppressor gene retinoblastoma family protein 1 (Rb) in imaginal discs. Collectively, our findings implicate dSETDB1 in postembryonic DNA methylation, provide a model for silencing of the tumor suppressor Rb, and uncover a role for cell type-specific DNA methylation in Drosophila development

    The Oncoprotein EVI1 and the DNA Methyltransferase Dnmt3 Co-Operate in Binding and De Novo Methylation of Target DNA

    Get PDF
    EVI1 has pleiotropic functions during murine embryogenesis and its targeted disruption leads to prenatal death by severely affecting the development of virtually all embryonic organs. However, its functions in adult tissues are still unclear. When inappropriately expressed, EVI1 becomes one of the most aggressive oncogenes associated with human hematopoietic and solid cancers. The mechanisms by which EVI1 transforms normal cells are unknown, but we showed recently that EVI1 indirectly upregulates self-renewal and cell-cycling genes by inappropriate methylation of CpG dinucleotides in the regulatory regions of microRNA-124-3 (miR-124-3), leading to the repression of this small gene that controls normal differentiation and cell cycling of somatic cells. We used the regulatory regions of miR-124-3 as a read-out system to investigate how EVI1 induces de novo methylation of DNA. Here we show that EVI1 physically interacts with DNA methyltransferases 3a and 3b (Dnmt3a/b), which are the only de novo DNA methyltransferases identified to date in mouse and man, and that it forms an enzymatically active protein complex that induces de novo DNA methylation in vitro. This protein complex targets and binds to a precise region of miR-124-3 that is necessary for repression of a reporter gene by EVI1. Based on our findings, we propose that in cooperation with Dnmt3a/b EVI1 regulates the methylation of DNA as a sequence-specific mediator of de novo DNA methylation and that inappropriate EVI1 expression contributes to carcinogenesis through improper DNA methylation

    Polycomb-mediated silencing in neuroendocrine prostate cancer

    Get PDF
    BACKGROUND: Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PCa) for which the median survival remains less than a year. Current treatments are only palliative in nature, and the lack of suitable pre-clinical models has hampered previous efforts to develop novel therapeutic strategies. Addressing this need, we have recently established the first in vivo model of complete neuroendocrine transdifferentiation using patient-derived xenografts. Few genetic differences were observed between parental PCa and relapsed NEPC, suggesting that NEPC likely results from alterations that are epigenetic in nature. Thus, we sought to identify targetable epigenetic regulators whose expression was elevated in NEPC using genome-wide profiling of patient-derived xenografts and clinical samples. RESULTS: Our data indicate that multiple members of the polycomb group (PcG) family of transcriptional repressors were selectively upregulated in NEPC. Notably, CBX2 and EZH2 were consistently the most highly overexpressed epigenetic regulators across multiple datasets from clinical and xenograft tumor tissues. Given the striking upregulation of PcG genes and other transcriptional repressors, we derived a 185-gene list termed 'neuroendocrine-associated repression signature' (NEARS) by overlapping transcripts downregulated across multiple in vivo NEPC models. In line with the striking upregulation of PcG family members, NEARS was preferentially enriched with PcG target genes, suggesting a driving role for PcG silencing in NEPC. Importantly, NEARS was significantly associated with high-grade tumors, metastatic progression, and poor outcome in multiple clinical datasets, consistent with extensive literature linking PcG genes and aggressive disease progression. CONCLUSIONS: We have explored the epigenetic landscape of NEPC and provided evidence of increased PcG-mediated silencing associated with aberrant transcriptional regulation of key differentiation genes. Our results position CBX2 and EZH2 as potential therapeutic targets in NEPC, providing opportunities to explore novel strategies aimed at reversing epigenetic alterations driving this lethal disease

    OC6 Phase Ia: CFD Simulations of the Free-Decay Motion of the DeepCwind Semisubmersible

    Get PDF
    Currently, the design of floating offshore wind systems is primarily based on mid-fidelity models with empirical drag forces. The tuning of the model coefficients requires data from either experiments or high-fidelity simulations. As part of the OC6 (Offshore Code Comparison Collaboration, Continued, with Correlation, and unCertainty (OC6) is a project under the International Energy Agency Wind Task 30 framework) project, the present investigation explores the latter option. A verification and validation study of computational fluid dynamics (CFD) models of the DeepCwind semisubmersible undergoing free-decay motion is performed. Several institutions provided CFD results for validation against the OC6 experimental campaign. The objective is to evaluate whether the CFD setups of the participants can provide valid estimates of the hydrodynamic damping coefficients needed by mid-fidelity models. The linear and quadratic damping coefficients and the equivalent damping ratio are chosen as metrics for validation. Large numerical uncertainties are estimated for the linear and quadratic damping coefficients; however, the equivalent damping ratios are more consistently predicted with lower uncertainty. Some difference is observed between the experimental and CFD surge-decay motion, which is caused by mechanical damping not considered in the simulations that likely originated from the mooring setup, including a Coulomb-friction-type force. Overall, the simulations and the experiment show reasonable agreement, thus demonstrating the feasibility of using CFD simulations to tune mid-fidelity models.</jats:p
    corecore