11 research outputs found

    The Relationship of Cytokines IL-13 and IL-17 with Autoantibodies Profile in Early Rheumatoid Arthritis

    Get PDF
    Aims. In the present study, we aimed to assess the concentrations of IL-13 and IL-17 in serum of patients with early rheumatoid arthritis (eRA), the investigation of correlation between the concentrations of these cytokines and disease activity score, and the concentration of some autoantibodies and the evaluation of the utility of IL-13 and -17 concentration measurements as markers of disease activity. Materials and Methods. Serum samples were collected from 30 patients and from 28 controls and analysed parameters. Results. The serum concentrations of IL-13, IL-17, anti-CCP, and IgM-RF were statistically significantly higher in patients with eRA, compared to the controls. IL-13 concentrations in the severe and moderate groups with eRA were statistically higher than in the mild and control groups. Also, in the case of IL-17, serum concentrations increased proportionally with the disease activity of eRA. We observe that concentrations of IL-13 and -17 did not correlate with autoantibodies. IL-17 concentration significantly positively correlated with CRP, while IL-13 concentration significantly negatively correlated with CRP. Disease activity score, DAS28, was strongly positively correlated with levels of ESR and weakly positively correlated with concentrations of anti-RA33 autoantibodies. IL-13 has a higher diagnostic utility than IL-17, CRP, ESR, IgM-RF, and anti-CCP as markers of disease activity. Conclusions. The presence of higher IL-13 and IL-17 serum levels in patients, compared with those of controls, confirms that these markers, found with high specificity, might be involved in the pathogenesis of eRA. IL-13 and IL-17 might be of better usefulness in the prediction of eRA activity status than IgM-RF and anti-CCP

    Multilevel Spiral Axicon for High-Order Bessel–Gauss Beams Generation

    No full text
    This paper presents an efficient method to generate high-order Bessel–Gauss beams carrying orbital angular momentum (OAM) by using a thin and compact optical element such as a multilevel spiral axicon. This approach represents an excellent alternative for diffraction-free OAM beam generation instead of complex methods based on a doublet formed by a physical spiral phase plate and zero-order axicon, phase holograms loaded on spatial light modulators (SLMs), or the interferometric method. Here, we present the fabrication process for axicons with 16 and 32 levels, characterized by high mode conversion efficiency and good transmission for visible light (λ = 633 nm wavelength). The Bessel vortex states generated with the proposed diffractive optical elements (DOEs) can be exploited as a very useful resource for optical and quantum communication in free-space channels or in optical fibers

    Sonochemically synthetized ZnO-Graphene nanohybrids and its characterization

    No full text
    The paper presents the morphological, structural and compositional properties of the sonochemically prepared ZnO-1.4wt% Graphene (Z-G) nanocomposites as a function of pH value of suspension varying from 8.5 to 14 and thermal annealing at 450°C in nitrogen or air ambient. The SEM analysis of the Z-G hybrids dried at 150°C in air has shown a nano-flower like nanostructure for a pH value of 14. The XRD analysis of dried Z-G hybrids revealed a crystallite size increase from 3.5 nm to 18.4 nm with pH increase, and this result was explained in terms of colloids zeta potential evolution with pH value. The Raman and EDS spectroscopy have shown a split of the G band (1575 cm−1) of graphene into two bands (1575 cm−1 and 1605 cm−1), an increased height of D (1323 cm−1) band, and an additional amount of carbon due to CO2 absorption from the air, respectively. The carbon incorporation increased with the decrease of pH, and was associated with a hydrozincite phase, Zn5(CO3)2(OH)6. The formation of dried Z-G nanocomposite was clearly demonstrated only at a pH value equal to 14, where two ZnO Raman active bands at 314.9 cm−1 and 428.2 cm−1 appeared. This result may indicate the sensitivity of the Raman spectroscopy to the nanoflower-like nanostructure of dried Z-G hybrids prepared at pH=14. The thermal treatment of Z-G hybrids in N2at 450°C has increased the number of ZnO Raman bands as a function of pH value, it has decreased the amount of additional carbon by conversion of hydrozincite to ZnO and preserved the graphene profile. The thermal treatment in air at 450°C has increased the crystalline symmetry and stoichiometry of the ZnO as revealed by high and narrow Raman band from 99 cm−1 specific to Zn optical phonons, but it has severely affected the graphene profile in the Z-G hybrid, due to combustion of graphene in oxygen from the ambient

    Organic–Inorganic Ternary Nanohybrids of Single-Walled Carbon Nanohorns for Room Temperature Chemiresistive Ethanol Detection

    No full text
    Organic–inorganic ternary nanohybrids consisting of oxidized-single walled carbon nanohorns-SnO2-polyvinylpyrrolidone (ox-SWCNH/SnO2/PVP) with stoichiometry 1/1/1 and 2/1/1 and ox-SWCNH/ZnO/PVP = 5/2/1 and 5/3/2 (all mass ratios) were synthesized and characterized as sensing films of chemiresistive test structures for ethanol vapor detection in dry air, in the range from 0 up to 50 mg/L. All the sensing films had an ox-SWCNH concentration in the range of 33.3–62.5 wt%. A comparison between the transfer functions and the response and recovery times of these sensing devices has shown that the structures with ox-SWCNH/SnO2/PVP = 1/1/1 have the highest relative sensitivities of 0.0022 (mg/L)−1, while the devices with ox-SWCNH/SnO2/PVP = 2/1/1 have the lowest response time (15 s) and recovery time (50 s) for a room temperature operation, proving the key role of carbonic material in shaping the static and dynamic performance of the sensor. These response and recovery times are lower than those of “heated” commercial sensors. The sensing mechanism is explained in terms of the overall response of a p-type semiconductor, where ox-SWCNH percolated between electrodes of the sensor, shunting the heterojunctions made between n-type SnO2 or ZnO and p-type ox-SWCNH. The hard–soft acid–base (HSAB) principle supports this mechanism. The low power consumption of these devices, below 2 mW, and the sensing performances at room temperature may open new avenues towards ethanol sensors for passive samplers of environment monitoring, alcohol test portable instruments and wireless network sensors for Internet of Things applications

    Serum Biomarkers for Discrimination between Hepatitis C-Related Arthropathy and Early Rheumatoid Arthritis

    No full text
    In the present study, we aimed to estimate the concentrations of cytokines (interleukin 6, IL-6, tumor necrosis factor-α, TNF-α) and auto-antibodies (rheumatoid factor IgM isotype, IgM-RF, antinuclear auto-antibodies, ANA, anti–cyclic citrullinated peptide antibodies IgG isotype, IgG anti-CCP3.1, anti-cardiolipin IgG isotype, IgG anti-aCL) in serum of patients with eRA (early rheumatoid arthritis) and HCVrA (hepatitis C virus-related arthropathy) and to assess the utility of IL-6, TNF-α together with IgG anti-CCP and IgM-RF in distinguishing between patients with true eRA and HCVrA, in the idea of using them as differential immunomarkers. Serum samples were collected from 54 patients (30 diagnosed with eRA-subgroup 1 and 24 with HCVrA-subgroup 2) and from 28 healthy control persons. For the evaluation of serum concentrations of studied cytokines and auto-antibodies, we used immunoenzimatique techniques. The serum concentrations of both proinflammatory cytokines were statistically significantly higher in patients of subgroup 1 and subgroup 2, compared to the control group (p < 0.0001). Our study showed statistically significant differences of the mean concentrations only for ANA and IgG anti-CCP between subgroup 1 and subgroup 2. We also observed that IL-6 and TNF-α better correlated with auto-antibodies in subgroup 1 than in subgroup 2. In both subgroups of patients, ROC curves indicated that IL-6 and TNF-α have a higher diagnostic utility as markers of disease. In conclusion, we can say that, due to high sensitivity for diagnostic accuracy, determination of serum concentrations of IL-6 and TNF-α, possibly in combination with auto-antibodies, could be useful in the diagnosis and distinguishing between patients with true eRA and HCV patients with articular manifestation and may prove useful in the monitoring of the disease course

    Ternary Holey Carbon Nanohorns/TiO2/PVP Nanohybrids as Sensing Films for Resistive Humidity Sensors

    No full text
    In this paper, we present the relative humidity (RH) sensing response of a chemiresistive sensor, employing sensing layers based on a ternary nanohybrids comprised of holey carbon nanohorns (CNHox), titanium (IV) oxide, and polyvinylpyrrolidone (PVP) at 1/1/1/(T1), 2/1/1/(T2), and with 3/1/1 (T3) mass ratios. The sensing device is comprised of a silicon-based substrate, a SiO2 layer, and interdigitated transducer (IDT) electrodes. The sensitive layer was deposited via the drop-casting method on the sensing structure, followed by a two-step annealing process. The structure and composition of the sensing films were investigated through scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD). The resistance of the ternary nanohybrid-based sensing layer increases when H increases between 0% and 80%. A different behavior of the sensitive layers is registered when the humidity increases from 80% to 100%. Thus, the resistance of the T1 sensor slightly decreases with increasing humidity, while the resistance of sensors T2 and T3 register an increase in resistance with increasing humidity. The T2 and T3 sensors demonstrate a good linearity for the entire (0–100%) RH range, while for T1, the linear behavior is limited to the 0–80% range. Their overall room temperature response is comparable to a commercial humidity sensor, characterized by a good sensitivity, a rapid response, and fast recovery times. The functional role for each of the components of the ternary CNHox/TiO2/PVP nanohybrid is explained by considering issues such as their electronic properties, affinity for water molecules, and internal pore accessibility. The decreasing number of holes in the carbonaceous component at the interaction with water molecules, with the protonic conduction (Grotthus mechanism), and with swelling were analyzed to evaluate the sensing mechanism. The hard–soft acid-base (HSAB) theory also has proven to be a valuable tool for understanding the complex interaction of the ternary nanohybrid with moisture

    Low Power Resistive Oxygen Sensor Based on Sonochemical SrTi0.6Fe0.4O2.8 (STFO40)

    No full text
    The current paper reports on a sonochemical synthesis method for manufacturing nanostructured (typical grain size of 50 nm) SrTi0.6Fe0.4O2.8 (Sono-STFO40) powder. This powder is characterized using X ray-diffraction (XRD), Mössbauer spectroscopy and Scanning Electron Microscopy (SEM), and results are compared with commercially available SrTi0.4Fe0.6O2.8 (STFO60) powder. In order to manufacture resistive oxygen sensors, both Sono-STFO40 and STFO60 are deposited, by dip-pen nanolithography (DPN) method, on an SOI (Silicon-on-Insulator) micro-hotplate, employing a tungsten heater embedded within a dielectric membrane. Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C. The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s). These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments

    Low Power Resistive Oxygen Sensor Based on Sonochemical SrTi0.6Fe0.4O2.8 (STFO40)

    No full text
    The current paper reports on a sonochemical synthesis method for manufacturing nanostructured (typical grain size of 50 nm) SrTi0.6Fe0.4O2.8 (Sono-STFO40) powder. This powder is characterized using X ray-diffraction (XRD), Mössbauer spectroscopy and Scanning Electron Microscopy (SEM), and results are compared with commercially available SrTi0.4Fe0.6O2.8 (STFO60) powder. In order to manufacture resistive oxygen sensors, both Sono-STFO40 and STFO60 are deposited, by dip-pen nanolithography (DPN) method, on an SOI (Silicon-on-Insulator) micro-hotplate, employing a tungsten heater embedded within a dielectric membrane. Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C. The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s). These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments

    The Relationship of Cytokines IL-13 and IL-17 with Autoantibodies Profile in Early Rheumatoid Arthritis

    No full text
    Aims. In the present study, we aimed to assess the concentrations of IL-13 and IL-17 in serum of patients with early rheumatoid arthritis (eRA), the investigation of correlation between the concentrations of these cytokines and disease activity score, and the concentration of some autoantibodies and the evaluation of the utility of IL-13 and -17 concentration measurements as markers of disease activity. Materials and Methods. Serum samples were collected from 30 patients and from 28 controls and analysed parameters. Results. The serum concentrations of IL-13, IL-17, anti-CCP, and IgM-RF were statistically significantly higher in patients with eRA, compared to the controls. IL-13 concentrations in the severe and moderate groups with eRA were statistically higher than in the mild and control groups. Also, in the case of IL-17, serum concentrations increased proportionally with the disease activity of eRA. We observe that concentrations of IL-13 and -17 did not correlate with autoantibodies. IL-17 concentration significantly positively correlated with CRP, while IL-13 concentration significantly negatively correlated with CRP. Disease activity score, DAS28, was strongly positively correlated with levels of ESR and weakly positively correlated with concentrations of anti-RA33 autoantibodies. IL-13 has a higher diagnostic utility than IL-17, CRP, ESR, IgM-RF, and anti-CCP as markers of disease activity. Conclusions. The presence of higher IL-13 and IL-17 serum levels in patients, compared with those of controls, confirms that these markers, found with high specificity, might be involved in the pathogenesis of eRA. IL-13 and IL-17 might be of better usefulness in the prediction of eRA activity status than IgM-RF and anti-CCP

    Quaternary Holey Carbon Nanohorns/SnO2/ZnO/PVP Nano-Hybrid as Sensing Element for Resistive-Type Humidity Sensor

    No full text
    In this study, a resistive humidity sensor for moisture detection at room temperature is presented. The thin film proposed as a critical sensing element is based on a quaternary hybrid nanocomposite CNHox//SnO2/ZnO/PVP (oxidated carbon nanohorns–tin oxide–zinc oxide–polyvinylpyrrolidone) at the w/w/w/w ratios of 1.5/1/1/1 and 3/1/1/1. The sensing structure consists of a Si/SiO2 dielectric substrate and interdigitated transducers (IDT) electrodes, while the sensing film layer is deposited through the drop-casting method. Morphology and composition of the sensing layers were investigated through scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction, and Raman spectroscopy. Each quaternary hybrid nanocomposite-based thin film’s relative humidity (RH) sensing capability was analyzed by applying a direct current with known intensity between two electrodes and measuring the voltage difference when varying the RH from 0% to 100% in a humid nitrogen atmosphere. While the sensor with CNHox/SnO2/ZnO/PVP at 1.5/1/1/1 as the sensing layer has the better performance in terms of sensitivity, the structure employing CNHox//SnO2/ ZnO/PVP at 3/1/1/1 (mass ratio) as the sensing layer has a better performance in terms of linearity. The contribution of each component of the quaternary hybrid nanocomposites to the sensing performance is discussed in relation to their physical and chemical properties. Several alternative sensing mechanisms were taken into consideration and discussed. Based on the measured sensing results, we presume that the impact of the p-type semiconductor behavior of CNHox, in conjunction with the swelling of the hydrophilic polymer, is dominant and leads to the overall increasing resistance of the sensing film
    corecore