401 research outputs found
Dynamical Coulomb Blockade of Shot Noise
We observe the suppression of the finite frequency shot-noise produced by a
voltage biased tunnel junction due to its interaction with a single
electromagnetic mode of high impedance. The tunnel junction is embedded in a
quarter wavelength resonator containing a dense SQUID array providing it with a
characteristic impedance in the kOhms range and a resonant frequency tunable in
the 4-6 GHz range. Such high impedance gives rise to a sizeable Coulomb
blockade on the tunnel junction (roughly 30% reduction in the differential
conductance) and allows an efficient measurement of the spectral density of the
current fluctuations at the resonator frequency. The observed blockade of
shot-noise is found in agreement with an extension of the dynamical Coulomb
blockade theory
Multiplexed Readout of Transmon Qubits with Josephson Bifurcation Amplifiers
Achieving individual qubit readout is a major challenge in the development of
scalable superconducting quantum processors. We have implemented the
multiplexed readout of a four transmon qubit circuit using non-linear
resonators operated as Josephson bifurcation amplifiers. We demonstrate the
simultaneous measurement of Rabi oscillations of the four transmons. We find
that multiplexed Josephson bifurcation is a high-fidelity readout method, the
scalability of which is not limited by the need of a large bandwidth nearly
quantum-limited amplifier as is the case with linear readout resonators.Comment: 7 pages, 6 figures, and 31 reference
High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID-array
We have developed and measured a high-gain quantum-limited microwave
parametric amplifier based on a superconducting lumped LC resonator with the
inductor L including an array of 8 superconducting quantum interference devices
(SQUIDs). This amplifier is parametrically pumped by modulating the flux
threading the SQUIDs at twice the resonator frequency. Around 5 GHz, a maximum
gain of 31 dB, a product amplitude-gain x bandwidth above 60 MHz, and a 1 dB
compression point of -123 dBm at 20 dB gain are obtained in the non-degenerate
mode of operation. Phase sensitive amplification-deamplification is also
measured in the degenerate mode and yields a maximum gain of 37 dB. The
compression point obtained is 18 dB above what would be obtained with a single
SQUID of the same inductance, due to the smaller nonlinearity of the SQUID
array.Comment: 7 pages, 4 figures, 23 reference
Fluctuation-Dissipation Relations of a Tunnel Junction Driven by a Quantum Circuit
We derive fluctuation-dissipation relations for a tunnel junction driven by a
high impedance microwave resonator, displaying strong quantum fluctuations. We
find that the fluctuation-dissipation relations derived for classical forces
hold, provided the effect of the circuit's quantum fluctuations is incorporated
into a modified non-linear curve. We also demonstrate that all
quantities measured under a coherent time dependent bias can be reconstructed
from their dc counterpart with a photo-assisted tunneling relation. We confirm
these predictions by implementing the circuit and measuring the dc current
through the junction, its high frequency admittance and its current noise at
the frequency of the resonator.Comment: Publisehd as Physical Review Letters, 114, 12680
Storage and Retrieval of a Microwave Field in a Spin Ensemble
We report the storage and retrieval of a small microwave field from a
superconducting resonator into collective excitations of a spin ensemble. The
spins are nitrogen-vacancy centers in a diamond crystal. The storage time of
the order of 30 ns is limited by inhomogeneous broadening of the spin ensemble.Comment: 4 pages + supplementary material. Submitted to PR
Dephasing of qubits by transverse low-frequency noise
We analyze the dissipative dynamics of a two-level quantum system subject to
low-frequency, e.g. 1/f noise, motivated by recent experiments with
superconducting quantum circuits. We show that the effect of transverse linear
coupling of the system to low-frequency noise is equivalent to that of
quadratic longitudinal coupling. We further find the decay law of quantum
coherent oscillations under the influence of both low- and high-frequency
fluctuations, in particular, for the case of comparable rates of relaxation and
pure dephasing
Circuit QED with a Nonlinear Resonator : ac-Stark Shift and Dephasing
We have performed spectroscopic measurements of a superconducting qubit
dispersively coupled to a nonlinear resonator driven by a pump microwave field.
Measurements of the qubit frequency shift provide a sensitive probe of the
intracavity field, yielding a precise characterization of the resonator
nonlinearity. The qubit linewidth has a complex dependence on the pump
frequency and amplitude, which is correlated with the gain of the nonlinear
resonator operated as a small-signal amplifier. The corresponding dephasing
rate is found to be close to the quantum limit in the low-gain limit of the
amplifier.Comment: Paper : 4 pages, 3 figures; Supplementary material : 1 page, 1 figur
Manipulating the Quantum State of an Electrical Circuit
We have designed and operated a superconducting tunnel junction circuit that
behaves as a two-level atom: the ``quantronium''. An arbitrary evolution of its
quantum state can be programmed with a series of microwave pulses, and a
projective measurement of the state can be performed by a pulsed readout
sub-circuit. The measured quality factor of quantum coherence Qphi=25000 is
sufficiently high that a solid-state quantum processor based on this type of
circuit can be envisioned.Comment: 4 figures include
- …
