355 research outputs found
Dynamical Coulomb Blockade of Shot Noise
We observe the suppression of the finite frequency shot-noise produced by a
voltage biased tunnel junction due to its interaction with a single
electromagnetic mode of high impedance. The tunnel junction is embedded in a
quarter wavelength resonator containing a dense SQUID array providing it with a
characteristic impedance in the kOhms range and a resonant frequency tunable in
the 4-6 GHz range. Such high impedance gives rise to a sizeable Coulomb
blockade on the tunnel junction (roughly 30% reduction in the differential
conductance) and allows an efficient measurement of the spectral density of the
current fluctuations at the resonator frequency. The observed blockade of
shot-noise is found in agreement with an extension of the dynamical Coulomb
blockade theory
High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID-array
We have developed and measured a high-gain quantum-limited microwave
parametric amplifier based on a superconducting lumped LC resonator with the
inductor L including an array of 8 superconducting quantum interference devices
(SQUIDs). This amplifier is parametrically pumped by modulating the flux
threading the SQUIDs at twice the resonator frequency. Around 5 GHz, a maximum
gain of 31 dB, a product amplitude-gain x bandwidth above 60 MHz, and a 1 dB
compression point of -123 dBm at 20 dB gain are obtained in the non-degenerate
mode of operation. Phase sensitive amplification-deamplification is also
measured in the degenerate mode and yields a maximum gain of 37 dB. The
compression point obtained is 18 dB above what would be obtained with a single
SQUID of the same inductance, due to the smaller nonlinearity of the SQUID
array.Comment: 7 pages, 4 figures, 23 reference
Multiplexed Readout of Transmon Qubits with Josephson Bifurcation Amplifiers
Achieving individual qubit readout is a major challenge in the development of
scalable superconducting quantum processors. We have implemented the
multiplexed readout of a four transmon qubit circuit using non-linear
resonators operated as Josephson bifurcation amplifiers. We demonstrate the
simultaneous measurement of Rabi oscillations of the four transmons. We find
that multiplexed Josephson bifurcation is a high-fidelity readout method, the
scalability of which is not limited by the need of a large bandwidth nearly
quantum-limited amplifier as is the case with linear readout resonators.Comment: 7 pages, 6 figures, and 31 reference
Quasiparticle decay rate of Josephson charge qubit oscillations
We analyze the decay of Rabi oscillations in a charge qubit consisting of a
Cooper pair box connected to a finite-size superconductor by a Josephson
junction. We concentrate on the contribution of quasiparticles in the
superconductors to the decay rate. Passing of a quasiparticle through the
Josephson junction tunes the qubit away from the charge degeneracy, thus
spoiling the Rabi oscillations. We find the temperature dependence of the
quasiparticle contribution to the decay rate for open and isolated systems. The
former case is realized if a normal-state trap is included in the circuit, or
if just one vortex resides in the qubit; the decay rate has an activational
temperature dependence with the activation energy equal to the superconducting
gap . In a superconducting qubit isolated from the environment, the
activation energy equals if the number of electrons is even, while
for an odd number of electrons the decay rate of an excited qubit state remains
finite in the limit of zero temperature. We estimate the decay rate for
realistic parameters of a qubit.Comment: 8 pages, 3 figures, final version as published in PRB, minor change
Fast entanglement of two charge-phase qubits through nonadiabatic coupling to a large junction
We propose a theoretical protocol for quantum logic gates between two
Josephson junction charge-phase qubits through the control of their coupling to
a large junction. In the low excitation limit of the large junction when
, it behaves effectively as a quantum data-bus mode of a
harmonic oscillator. Our protocol is efficient and fast. In addition, it does
not require the data-bus to stay adiabatically in its ground state, as such it
can be implemented over a wide parameter regime independent of the data-bus
quantum state.Comment: 5 pages, 1 figur
Manipulating the Quantum State of an Electrical Circuit
We have designed and operated a superconducting tunnel junction circuit that
behaves as a two-level atom: the ``quantronium''. An arbitrary evolution of its
quantum state can be programmed with a series of microwave pulses, and a
projective measurement of the state can be performed by a pulsed readout
sub-circuit. The measured quality factor of quantum coherence Qphi=25000 is
sufficiently high that a solid-state quantum processor based on this type of
circuit can be envisioned.Comment: 4 figures include
Kinetics of the superconducting charge qubit in the presence of a quasiparticle
We investigate the energy and phase relaxation of a superconducting qubit
caused by a single quasiparticle. In our model, the qubit is an isolated system
consisting of a small island (Cooper-pair box) and a larger superconductor
(reservoir) connected with each other by a tunable Josephson junction. If such
system contains an odd number of electrons, then even at lowest temperatures a
single quasiparticle is present in the qubit. Tunneling of a quasiparticle
between the reservoir and the Cooper-pair box results in the relaxation of the
qubit. We derive master equations governing the evolution of the qubit
coherences and populations. We find that the kinetics of the qubit can be
characterized by two time scales - quasiparticle escape time from reservoir to
the box, , and quasiparticle relaxation time . The
former is determined by the dimensionless normal-state conductance of the
Josephson junction and one-electron level spacing in the reservoir
(), and the latter is due to electron-phonon
interaction. We find that phase coherence is damped on the time scale of
. The qubit energy relaxation depends on the ratio of the two
characteristic times, and , and also on the ratio of
temperature to the Josephson energy .Comment: 12 pages, 4 figures, final version as published in PRB, some changes,
reference adde
Quantum Heating of a nonlinear resonator probed by a superconducting qubit
We measure the quantum fluctuations of a pumped nonlinear resonator, using a
superconducting artificial atom as an in-situ probe. The qubit excitation
spectrum gives access to the frequency and temperature of the intracavity field
fluctuations. These are found to be in agreement with theoretical predictions;
in particular we experimentally observe the phenomenon of quantum heating
- …