15 research outputs found

    Dual Targeting of CDK4 and ARK5 Using a Novel Kinase Inhibitor ON123300 Exerts Potent Anticancer Activity against Multiple Myeloma.

    Get PDF
    Multiple myeloma is a fatal plasma cell neoplasm accounting for over 10,000 deaths in the United States each year. Despite new therapies, multiple myeloma remains incurable, and patients ultimately develop drug resistance and succumb to the disease. The response to selective CDK4/6 inhibitors has been modest in multiple myeloma, potentially because of incomplete targeting of other critical myeloma oncogenic kinases. As a substantial number of multiple myeloma cell lines and primary samples were found to express AMPK-related protein kinase 5(ARK5), a member of the AMPK family associated with tumor growth and invasion, we examined whether dual inhibition of CDK4 and ARK5 kinases using ON123300 results in a better therapeutic outcome. Treatment of multiple myeloma cell lines and primary samples with ON123300 in vitro resulted in rapid induction of cell-cycle arrest followed by apoptosis. ON123300-mediated ARK5 inhibition or ARK5-specific siRNAs resulted in the inhibition of the mTOR/S6K pathway and upregulation of the AMPK kinase cascade. AMPK upregulation resulted in increased SIRT1 levels and destabilization of steady-state MYC protein. Furthermore, ON123300 was very effective in inhibiting tumor growth in mouse xenograft assays. In addition, multiple myeloma cells sensitive to ON123300 were found to have a unique genomic signature that can guide the clinical development of ON123300. Our study provides preclinical evidence that ON123300 is unique in simultaneously inhibiting key oncogenic pathways in multiple myeloma and supports further development of ARK5 inhibition as a therapeutic approach in multiple myeloma

    Mutation-derived Neoantigen-specific T-cell Responses in Multiple Myeloma.

    Get PDF
    PURPOSE: Somatic mutations in cancer cells can give rise to novel protein sequences that can be presented by antigen-presenting cells as neoantigens to the host immune system. Tumor neoantigens represent excellent targets for immunotherapy, due to their specific expression in cancer tissue. Despite the widespread use of immunomodulatory drugs and immunotherapies that recharge T and NK cells, there has been no direct evidence that neoantigen-specific T-cell responses are elicited in multiple myeloma. EXPERIMENTAL DESIGN: Using next-generation sequencing data we describe the landscape of neo-antigens in 184 patients with multiple myeloma and successfully validate neoantigen-specific T cells in patients with multiple myeloma and support the feasibility of neoantigen-based therapeutic vaccines for use in cancers with intermediate mutational loads such as multiple myeloma. RESULTS: In this study, we demonstrate an increase in neoantigen load in relapsed patients with multiple myeloma as compared with newly diagnosed patients with multiple myeloma. Moreover, we identify shared neoantigens across multiple patients in three multiple myeloma oncogenic driver genes (KRAS, NRAS, and IRF4). Next, we validate neoantigen T-cell response and clonal expansion in correlation with clinical response in relapsed patients with multiple myeloma. This is the first study to experimentally validate the immunogenicity of predicted neoantigens from next-generation sequencing in relapsed patients with multiple myeloma. CONCLUSIONS: Our findings demonstrate that somatic mutations in multiple myeloma can be immunogenic and induce neoantigen-specific T-cell activation that is associated with antitumor activity in vitro and clinical response in vivo. Our results provide the foundation for using neoantigen targeting strategies such as peptide vaccines in future trials for patients with multiple myeloma

    A phase 2 study of panobinostat with lenalidomide and weekly dexamethasone in myeloma.

    Get PDF
    Phase 3 studies combining histone deacetylase inhibitors with bortezomib were hampered by gastrointestinal (GI) intolerance, which was not observed when combined with immunomodulatory drugs. This study is a single-center phase 2 study of panobinostat with lenalidomide and dexamethasone (FRD). Twenty-seven relapsed multiple myeloma patients were enrolled. Twenty-two patients (81%) were lenalidomide refractory and 9 (33%), 14 (52%), and 7 (26%) were refractory to pomalidomide, bortezomib, and carfilzomib, respectively. High-risk molecular findings were present in 17 (63%) patients. Responses included 2 complete responses (CRs), 4 very good partial responses (VGPRs), 5 partial responses (PRs), and 9 minimal responses (MRs) for an overall response rate of 41%, clinical benefit rate of 74%, and a disease control rate of 96%. The median progression-free survival (PFS) was 7.1 months. In the 22 lenalidomide-refractory patients, there were 1 CR, 4 VGPRs, 3 PRs, and 7 MRs, with a median PFS of 6.5 months. Median overall survival was not reached. Grade 3/4 toxicities were primarily hematologic. Gene expression profiling of enrollment tumor samples revealed a set of 1989 genes associated with short (<90 days) PFS to therapy. MAGEA1 RNA and protein expression were correlated with short PFS, and laboratory studies demonstrated a role for MAGE-A in resistance to panobinostat-induced cell death. FRD demonstrates durable responses, even in high-risk, lenalidomide-refractory patients, indicating the essential role of panobinostat in attaining responses. MAGEA1 expression may represent a functional biomarker for resistance to panobinostat. In contrast to PANORAMA 1, there were no significant GI toxicities and primarily expected hematologic toxicities. This trial was registered at www.clinicaltrials.gov as #NCT00742027
    corecore