47 research outputs found

    Empirical Determination of Bang-Bang Operations

    Full text link
    Strong and fast "bang-bang" (BB) pulses have been recently proposed as a means for reducing decoherence in a quantum system. So far theoretical analysis of the BB technique relied on model Hamiltonians. Here we introduce a method for empirically determining the set of required BB pulses, that relies on quantum process tomography. In this manner an experimenter may tailor his or her BB pulses to the quantum system at hand, without having to assume a model Hamiltonian.Comment: 14 pages, 2 eps figures, ReVTeX4 two-colum

    Evidence for a narrow dip structure at 1.9 GeV/c2^2 in 3π+3π3\pi^+ 3\pi^- diffractive photoproduction

    Full text link
    A narrow dip structure has been observed at 1.9 GeV/c2^2 in a study of diffractive photoproduction of the  3π+3π~3\pi^+3\pi^- final state performed by the Fermilab experiment E687.Comment: The data of Figure 6 can be obtained by downloading the raw data file e687_6pi.txt. v5 (2nov2018): added Fig. 7, the 6 pion energy distribution as requested by a reade

    Mobile Visual Aid Tools for Users with Visual Impairments

    No full text
    Visual impairments affect a large percentage of population in various ways [1] including color-deficiency, presbyopia, low vision, and other more severe visual disabilities. Current estimates suggest there are approximately 10 million blind or visually impaired individuals in the United States alone. Visual impairmen

    A platform for discovery of functional cell-penetrating peptides for efficient multi-cargo intracellular delivery

    Get PDF
    Cell penetrating peptides (CPPs) offer great potential to deliver therapeutic molecules to previously inaccessible intracellular targets. However, many CPPs are inefficient and often leave their attached cargo stranded in the cell’s endosome. We report a versatile platform for the isolation of peptides delivering a wide range of cargos into the cytoplasm of cells. We used this screening platform to identify multiple “Phylomer” CPPs, derived from bacterial and viral genomes. These peptides are amenable to conventional sequence optimization and engineering approaches for cell targeting and half-life extension. We demonstrate potent, functional delivery of protein, peptide, and nucleic acid analog cargos into cells using Phylomer CPPs. We validate in vivo activity in the cytoplasm, through successful transport of an oligonucleotide therapeutic fused to a Phylomer CPP in a disease model for Duchenne’s muscular dystrophy. This report thus establishes a discovery platform for identifying novel, functional CPPs to expand the delivery landscape of druggable intracellular targets for biological therapeutics
    corecore