2,113 research outputs found

    On Quantum Control via Encoded Dynamical Decoupling

    Full text link
    I revisit the ideas underlying dynamical decoupling methods within the framework of quantum information processing, and examine their potential for direct implementations in terms of encoded rather than physical degrees of freedom. The usefulness of encoded decoupling schemes as a tool for engineering both closed- and open-system encoded evolutions is investigated based on simple examples.Comment: 12 pages, no figures; REVTeX style. This note collects various theoretical considerations complementing/motivated by the experimental demonstration of encoded control by Fortunato et a

    Simulating Hamiltonians in Quantum Networks: Efficient Schemes and Complexity Bounds

    Get PDF
    We address the problem of simulating pair-interaction Hamiltonians in n node quantum networks where the subsystems have arbitrary, possibly different, dimensions. We show that any pair-interaction can be used to simulate any other by applying sequences of appropriate local control sequences. Efficient schemes for decoupling and time reversal can be constructed from orthogonal arrays. Conditions on time optimal simulation are formulated in terms of spectral majorization of matrices characterizing the coupling parameters. Moreover, we consider a specific system of n harmonic oscillators with bilinear interaction. In this case, decoupling can efficiently be achieved using the combinatorial concept of difference schemes. For this type of interactions we present optimal schemes for inversion.Comment: 19 pages, LaTeX2

    Decoherence-Free Subspaces for Multiple-Qubit Errors: (I) Characterization

    Full text link
    Coherence in an open quantum system is degraded through its interaction with a bath. This decoherence can be avoided by restricting the dynamics of the system to special decoherence-free subspaces. These subspaces are usually constructed under the assumption of spatially symmetric system-bath coupling. Here we show that decoherence-free subspaces may appear without spatial symmetry. Instead, we consider a model of system-bath interactions in which to first order only multiple-qubit coupling to the bath is present, with single-qubit system-bath coupling absent. We derive necessary and sufficient conditions for the appearance of decoherence-free states in this model, and give a number of examples. In a sequel paper we show how to perform universal and fault tolerant quantum computation on the decoherence-free subspaces considered in this paper.Comment: 18 pages, no figures. Major changes. Section on universal fault tolerant computation removed. This section contained a crucial error. A new paper [quant-ph/0007013] presents the correct analysi

    Semiconductor-based Geometrical Quantum Gates

    Get PDF
    We propose an implementation scheme for holonomic, i.e., geometrical, quantum information processing based on semiconductor nanostructures. Our quantum hardware consists of coupled semiconductor macroatoms addressed/controlled by ultrafast multicolor laser-pulse sequences. More specifically, logical qubits are encoded in excitonic states with different spin polarizations and manipulated by adiabatic time-control of the laser amplitudes . The two-qubit gate is realized in a geometric fashion by exploiting dipole-dipole coupling between excitons in neighboring quantum dots.Comment: 4 Pages LaTeX, 3 Figures included. To appear in PRB (Rapid Comm.

    NMR Techniques for Quantum Control and Computation

    Full text link
    Fifty years of developments in nuclear magnetic resonance (NMR) have resulted in an unrivaled degree of control of the dynamics of coupled two-level quantum systems. This coherent control of nuclear spin dynamics has recently been taken to a new level, motivated by the interest in quantum information processing. NMR has been the workhorse for the experimental implementation of quantum protocols, allowing exquisite control of systems up to seven qubits in size. Here, we survey and summarize a broad variety of pulse control and tomographic techniques which have been developed for and used in NMR quantum computation. Many of these will be useful in other quantum systems now being considered for implementation of quantum information processing tasks.Comment: 33 pages, accepted for publication in Rev. Mod. Phys., added subsection on T_{1,\rho} (V.A.6) and on time-optimal pulse sequences (III.A.6), redid some figures, made many small changes, expanded reference

    Effect of noise on geometric logic gates for quantum computation

    Full text link
    We introduce the non-adiabatic, or Aharonov-Anandan, geometric phase as a tool for quantum computation and show how it could be implemented with superconducting charge qubits. While it may circumvent many of the drawbacks related to the adiabatic (Berry) version of geometric gates, we show that the effect of fluctuations of the control parameters on non-adiabatic phase gates is more severe than for the standard dynamic gates. Similarly, fluctuations also affect to a greater extent quantum gates that use the Berry phase instead of the dynamic phase.Comment: 8 pages, 4 figures; published versio

    Decoherence of quantum registers

    Get PDF
    The dynamical evolution of a quantum register of arbitrary length coupled to an environment of arbitrary coherence length is predicted within a relevant model of decoherence. The results are reported for quantum bits (qubits) coupling individually to different environments (`independent decoherence') and qubits interacting collectively with the same reservoir (`collective decoherence'). In both cases, explicit decoherence functions are derived for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: we show that this sensitivity is a characteristic of bothboth types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A non-trivial behaviour ("recoherence") is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. Our results lead to the identification of decoherence-free states in the collective decoherence limit. These states belong to subspaces of the system's Hilbert space that do not get entangled with the environment, making them ideal elements for the engineering of ``noiseless'' quantum codes. We also discuss the relations between decoherence of the quantum register and computational complexity based on the new dynamical results obtained for the register density matrix.Comment: Typos corrected. Discussion and references added. 1 figure + 3 tables added. This updated version contains 13 (double column) pages + 8 figures. PRA in pres

    Bang-bang control of fullerene qubits using ultra-fast phase gates

    Full text link
    Quantum mechanics permits an entity, such as an atom, to exist in a superposition of multiple states simultaneously. Quantum information processing (QIP) harnesses this profound phenomenon to manipulate information in radically new ways. A fundamental challenge in all QIP technologies is the corruption of superposition in a quantum bit (qubit) through interaction with its environment. Quantum bang-bang control provides a solution by repeatedly applying `kicks' to a qubit, thus disrupting an environmental interaction. However, the speed and precision required for the kick operations has presented an obstacle to experimental realization. Here we demonstrate a phase gate of unprecedented speed on a nuclear spin qubit in a fullerene molecule (N@C60), and use it to bang-bang decouple the qubit from a strong environmental interaction. We can thus trap the qubit in closed cycles on the Bloch sphere, or lock it in a given state for an arbitrary period. Our procedure uses operations on a second qubit, an electron spin, in order to generate an arbitrary phase on the nuclear qubit. We anticipate the approach will be vital for QIP technologies, especially at the molecular scale where other strategies, such as electrode switching, are unfeasible

    Holonomic quantum gates: A semiconductor-based implementation

    Get PDF
    We propose an implementation of holonomic (geometrical) quantum gates by means of semiconductor nanostructures. Our quantum hardware consists of semiconductor macroatoms driven by sequences of ultrafast laser pulses ({\it all optical control}). Our logical bits are Coulomb-correlated electron-hole pairs (excitons) in a four-level scheme selectively addressed by laser pulses with different polarization. A universal set of single and two-qubit gates is generated by adiabatic change of the Rabi frequencies of the lasers and by exploiting the dipole coupling between excitons.Comment: 10 Pages LaTeX, 10 Figures include

    Video face replacement

    Get PDF
    We present a method for replacing facial performances in video. Our approach accounts for differences in identity, visual appearance, speech, and timing between source and target videos. Unlike prior work, it does not require substantial manual operation or complex acquisition hardware, only single-camera video. We use a 3D multilinear model to track the facial performance in both videos. Using the corresponding 3D geometry, we warp the source to the target face and retime the source to match the target performance. We then compute an optimal seam through the video volume that maintains temporal consistency in the final composite. We showcase the use of our method on a variety of examples and present the result of a user study that suggests our results are difficult to distinguish from real video footage.National Science Foundation (U.S.) (Grant PHY-0835713)National Science Foundation (U.S.) (Grant DMS-0739255
    • …
    corecore