58 research outputs found

    Short-term complexity of cardiac autonomic control during sleep: REM as a potential risk factor for cardiovascular system in aging.

    Get PDF
    peer reviewedINTRODUCTION: Sleep is a complex phenomenon characterized by important modifications throughout life and by changes of autonomic cardiovascular control. Aging is associated with a reduction of the overall heart rate variability (HRV) and a decrease of complexity of autonomic cardiac regulation. The aim of our study was to evaluate the HRV complexity using two entropy-derived measures, Shannon Entropy (SE) and Corrected Conditional Entropy (CCE), during sleep in young and older subjects. METHODS: A polysomnographic study was performed in 12 healthy young (21.1+/-0.8 years) and 12 healthy older subjects (64.9+/-1.9 years). After the sleep scoring, heart period time series were divided into wake (W), Stage 1-2 (S1-2), Stage 3-4 (S3-4) and REM. Two complexity indexes were assessed: SE(3) measuring the complexity of a distribution of 3-beat patterns (SE(3) is higher when all the patterns are identically distributed and it is lower when some patterns are more likely) and CCE(min) measuring the minimum amount of information that cannot be derived from the knowledge of previous values. RESULTS: Across the different sleep stages, young subjects had similar RR interval, total variance, SE(3) and CCE(min). In the older group, SE(3) and CCE(min) were reduced during REM sleep compared to S1-2, S3-4 and W. Compared to young subjects, during W and sleep the older subjects showed a lower RR interval and reduced total variance as well as a significant reduction of SE(3) and CCE(min). This decrease of entropy measures was more evident during REM sleep. CONCLUSION: Our study indicates that aging is characterized by a reduction of entropy indices of cardiovascular variability during wake/sleep cycle, more evident during REM sleep. We conclude that during aging REM sleep is associated with a simplification of cardiac control mechanisms that could lead to an impaired ability of the cardiovascular system to react to cardiovascular adverse events

    Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation.

    Get PDF
    peer reviewedUnder sleep loss, vigilance is reduced and attentional failures emerge progressively. It becomes difficult to maintain stable performance over time, leading to growing performance variability (i.e., state instability) in an individual and among subjects. Task duration plays a major role in the maintenance of stable vigilance levels, such that the longer the task, the more likely state instability will be observed. Vulnerability to sleep-loss-dependent performance decrements is highly individual and is also modulated by a polymorphism in the human clock gene PERIOD3 (PER3). By combining two different protocols, we manipulated sleep-wake history by once extending wakefulness for 40 h (high sleep pressure condition) and once by imposing a short sleep-wake cycle by alternating 160 min of wakefulness and 80 min naps (low sleep pressure condition) in a within-subject design. We observed that homozygous carriers of the long repeat allele of PER3 (PER3 (5/5) ) experienced a greater time-on-task dependent performance decrement (i.e., a steeper increase in the number of lapses) in the Psychomotor Vigilance Task compared to the carriers of the short repeat allele (PER3 (4/4) ). These genotype-dependent effects disappeared under low sleep pressure conditions, and neither motivation, nor perceived effort accounted for these differences. Our data thus suggest that greater sleep-loss related attentional vulnerability based on the PER3 polymorphism is mirrored by a greater state instability under extended wakefulness in the short compared to the long allele carriers. Our results undermine the importance of time-on-task related aspects when investigating inter-individual differences in sleep loss-induced behavioral vulnerability

    Interindividual differences in circadian rhythmicity and sleep homeostasis in older people: effect of a PER3 polymorphism.

    Full text link
    Aging is associated with marked changes in the timing, consolidation and structure of sleep. Older people wake up frequently, get up earlier and have less slow wave sleep than young people, although the extent of these age-related changes differs considerably between individuals. Interindividual differences in homeostatic sleep regulation in young volunteers are associated with the variable-number, tandem-repeat (VNTR) polymorphism (rs57875989) in the coding region of the circadian clock gene PERIOD3 (PER3). However, predictors of these interindividual differences have yet to be identified in older people. Sleep electroencephalographic (EEG) characteristics and circadian rhythms were assessed in 26 healthy older volunteers (55-75 years) selected on the basis of homozygosity for either the long or short allele of the PER3 polymorphism. Homozygosity for the longer allele (PER3(5/5)) associated with a phase-advance in the circadian melatonin profile and an earlier occurrence of the melatonin peak within the sleep episode. Furthermore, older PER3(5/5) participants accumulated more nocturnal wakefulness, had increased EEG frontal delta activity (0.75-1.50 Hz), and decreased EEG frontal sigma activity (11-13 Hz) during non-rapid eye movement (REM) sleep compared with PER3(4/4) participants. Our results indicate that the polymorphism in the clock gene PER3 may contribute to interindividual differences in sleep and circadian physiology in older people

    Effects of Artificial Dawn and Morning Blue Light on Daytime Cognitive Performance, Well-being, Cortisol and Melatonin Levels.

    Full text link
    Light exposure elicits numerous effects on human physiology and behavior, such as better cognitive performance and mood. Here we investigated the role of morning light exposure as a countermeasure for impaired cognitive performance and mood under sleep restriction (SR). Seventeen participants took part of a 48h laboratory protocol, during which three different light settings (separated by 2 wks) were administered each morning after two 6-h sleep restriction nights: a blue monochromatic LED (light-emitting diode) light condition (BL; 100 lux at 470 nm for 20 min) starting 2 h after scheduled wake-up time, a dawn-simulating light (DsL) starting 30 min before and ending 20 min after scheduled wake-up time (polychromatic light gradually increasing from 0 to 250 lux), and a dim light (DL) condition for 2 h beginning upon scheduled wake time (<8 lux). Cognitive tasks were performed every 2 h during scheduled wakefulness, and questionnaires were administered hourly to assess subjective sleepiness, mood, and well-being. Salivary melatonin and cortisol were collected throughout scheduled wakefulness in regular intervals, and the effects on melatonin were measured after only one light pulse. Following the first SR, analysis of the time course of cognitive performance during scheduled wakefulness indicated a decrease following DL, whereas it remained stable following BL and significantly improved after DsL. Cognitive performance levels during the second day after SR were not significantly affected by the different light conditions. However, after both SR nights, mood and well-being were significantly enhanced after exposure to morning DsL compared with DL and BL. Melatonin onset occurred earlier after morning BL exposure, than after morning DsL and DL, whereas salivary cortisol levels were higher at wake-up time after DsL compared with BL and DL. Our data indicate that exposure to an artificial morning dawn simulation light improves subjective well-being, mood, and cognitive performance, as compared with DL and BL, with minimal impact on circadian phase. Thus, DsL may provide an effective strategy for enhancing cognitive performance, well-being, and mood under mild sleep restriction

    Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality

    No full text
    \u3cp\u3eObjectives: Specifications and standards for lighting installations in occupational settings are based on the spectral sensitivity of the classical visual system and do not take into account the recently discovered melanopsin-based, blue-light-sensitive photoreceptive system. The authors investigated the effects of exposure to blue-enriched white light during daytime workhours in an office setting. Methods: The experiment was conducted on 104 white-collar workers on two office floors. After baseline assessments under existing lighting conditions, every participant was exposed to two new lighting conditions, each lasting 4 weeks. One consisted of blue-enriched white light (17 000 K) and the other of white light (4000 K). The order was balanced between the floors. Questionnaire and rating scales were used to assess alertness, mood, sleep quality, performance, mental effort, headache and eye strain, and mood throughout the 8-week intervention. Results: Altogether 94 participants [mean age 36.4 (SD 10.2) years] were included in the analysis. Compared with white light (4000 K), blue-enriched white light (17 000 K) improved the subjective measures of alertness (P&lt;0.0001), positive mood (P=0.0001), performance (P&lt;0.0001), evening fatigue (P=0.0001), irritability (P=0.004), concentration (P&lt;0.0001), and eye discomfort (P=0.002). Daytime sleepiness was reduced (P=0.0001), and the quality of subjective nocturnal sleep (P=0.016) was improved under blue-enriched white light. When the participants' expectation about the effect of the light treatments was entered into the analysis as a covariate, significant effects persisted for performance, alertness, evening fatigue, irritability, difficulty focusing, concentrating, and blurred vision. Conclusions: Exposure to blue-enriched white light during daytime workhours improves subjective alertness, performance, and evening fatigue.\u3c/p\u3

    Human brain patterns underlying vigilant attention: impact of sleep debt, circadian phase and attentional engagement

    Full text link
    AbstractSleepiness and cognitive function vary over the 24-h day due to circadian and sleep-wake-dependent mechanisms. However, the underlying cerebral hallmarks associated with these variations remain to be fully established. Using functional magnetic resonance imaging (fMRI), we investigated brain responses associated with circadian and homeostatic sleep-wake-driven dynamics of subjective sleepiness throughout day and night. Healthy volunteers regularly performed a psychomotor vigilance task (PVT) in the MR-scanner during a 40-h sleep deprivation (high sleep pressure) and a 40-h multiple nap protocol (low sleep pressure). When sleep deprived, arousal-promoting thalamic activation during optimal PVT performance paralleled the time course of subjective sleepiness with peaks at night and troughs on the subsequent day. Conversely, task-related cortical activation decreased when sleepiness increased as a consequence of higher sleep debt. Under low sleep pressure, we did not observe any significant temporal association between PVT-related brain activation and subjective sleepiness. Thus, a circadian modulation in brain correlates of vigilant attention was only detectable under high sleep pressure conditions. Our data indicate that circadian and sleep homeostatic processes impact on vigilant attention via specific mechanisms; mirrored in a decline of cortical resources under high sleep pressure, opposed by a subcortical “rescuing” at adverse circadian times.</jats:p

    PER3 polymorphism and cardiac autonomic control: effects of sleep debt and circadian phase

    No full text
    A variable number tandem repeat polymorphism in the coding region of the circadian clock PERIOD3 (PER3) gene has been shown to affect sleep. Because circadian rhythms and sleep are known to modulate sympathovagal balance, we investigated whether homozygosity for this PER3 polymorphism is associated with changes in autonomic nervous system (ANS) activity during sleep and wakefulness at baseline and after sleep deprivation. Twenty-two healthy participants were selected according to their PER3 genotype. ANS activity, evaluated by heart rate (HR) and HR variability (HRV) indexes, was quantified during baseline sleep, a 40-h period of wakefulness, and recovery sleep. Sleep deprivation induced an increase in slow-wave sleep (SWS), a decrease in the global variability, and an unbalance of the ANS with a loss of parasympathetic predominance and an increase in sympathetic activity. Individuals homozygous for the longer allele (PER35/5) had more SWS, an elevated sympathetic predominance, and a reduction of parasympathetic activity compared with PER34/4, in particular during baseline sleep. The effects of genotype were strongest during non-rapid eye movement (NREM) sleep and absent or much smaller during REM sleep. The NREM-REM cycle-dependent modulation of the low frequency-to-(low frequency + high frequency) ratio was diminished in PER35/5 individuals. Circadian phase modulated HR and HRV, but no interaction with genotype was observed. In conclusion, the PER3 polymorphism affects the sympathovagal balance in cardiac control in NREM sleep similar to the effect of sleep deprivation

    The human circadian metabolome

    Full text link
    The circadian clock orchestrates many aspects of human physiology, and disruption of this clock has been implicated in various pathologies, ranging from cancer to metabolic syndrome and diabetes. Although there is evidence that metabolism and the circadian clockwork are intimately linked on a transcriptional level, whether these effects are directly under clock control or are mediated by the rest-activity cycle and the timing of food intake is unclear. To answer this question, we conducted an unbiased screen in human subjects of the metabolome of blood plasma and saliva at different times of day. To minimize indirect effects, subjects were kept in a 40-h constant routine of enforced posture, constant dim light, hourly isocaloric meals, and sleep deprivation. Under these conditions, we found that ~15% of all identified metabolites in plasma and saliva were under circadian control, most notably fatty acids in plasma and amino acids in saliva. Our data suggest that there is a strong direct effect of the endogenous circadian clock on multiple human metabolic pathways that is independent of sleep or feeding. In addition, they identify multiple potential small-molecule biomarkers of human circadian phase and sleep pressure

    Genetic polymorphisms of DAT1 and COMT differentially associate with actigraphy-derived sleep-wake cycles in young adults

    Full text link
    Accumulating evidence suggests that dopamine plays a key role in sleep-wake regulation. Cerebral dopamine levels are regulated primarily by the dopamine transporter (DAT) in the striatum and by catechol-O-methyl-transferase (COMT) in the prefrontal cortex. We hypothesized that the variable-number-tandem-repeat (VNTR) polymorphism in the 3'-untranslated region of the gene encoding DAT (DAT1, SLC6A3; rs28363170) and the Val158Met polymorphism of COMT (rs4680) differently affect actigraphy-derived rest-activity cycles and sleep estimates in healthy adults (65 men; 45 women; age range: 19-35 years). Daytime sleepiness, continuous rest-actigraphy and sleep diary data during roughly 4-weeks were analyzed. Nine-repeat (9R) allele carriers of DAT1 (n = 48) more often reported elevated sleepiness (Epworth sleepiness score ≥10) than 10-repeat (10R) allele homozygotes (n = 62, p < 0.02). Moreover, male 9R allele carriers showed higher wrist activity, whereas this difference was not present in women ("DAT1 genotype" × "gender" interaction: p < 0.005). Rest-activity patterns did not differ among COMT genotypes. Nevertheless, a significant "COMT genotype" × "type of day" (workdays vs. rest days) interaction for sleep duration was observed (p = 0.04). The Val/Val (n = 36) and Met/Met (n = 24) homozygotes habitually prolonged sleep on rest days compared to workdays by more than 30 min, while Val/Met heterozygotes (n = 50) did not significantly extend their sleep (mean difference: 7 min). Moreover, whereas the proportion of women among the genotype groups did not differ, COMT genotype affected body-mass-index (BMI), such that Val/Met individuals had lower BMI than the homozygous genotypes (p < 0.04). While awaiting independent replication and confirmation, our data support an association of genetically-determined differences in cerebral dopaminergic neurotransmission with daytime sleepiness and individual rest-activity profiles, as well as other sleep-associated health characteristics such as the regulation of BMI. The differential associations of DAT1 and COMT polymorphisms may reflect the distinct local expression of the encoded proteins in the brain

    Inter-individual differences in habitual sleep timing and entrained phase of endogenous circadian rhythms of BMAL1, PER2 and PER3 mRNA in human leukocytes

    Get PDF
    Study Objectives: Individual sleep timing differs and is governed partly by circadian oscillators, which may be assessed by hormonal markers, or by clock gene expression. Clock gene expression oscillates in peripheral tissues, including leukocytes. The study objective was to determine whether the endogenous phase of these rhythms, assessed in the absence of the sleep-wake and light-dark cycle, correlates with habitual sleep-wake timing. Design: Observational, cross-sectional. Setting: Home environment and Clinical Research Center. Participants: 24 healthy subjects aged 25.0 ± 3.5 (SD) years. Measurements: Actigraphy and sleep diaries were used to characterize sleep timing. Circadian rhythm phase and amplitude of plasma melatonin, cortisol, and BMAL1, PER2, and PER3 expression were assessed during a constant routine. Results: Circadian oscillations were more robust for PER3 than for BMAL1 or PER2. Average peak timings were 6:05 for PER3, 8:06 for PER2, 15:06 for BMAL1, 4:20 for melatonin, and 10:49 for cortisol. Individual sleep-wake timing correlated with the phases of melatonin and cortisol. Individual PER3 rhythms correlated significantly with sleep-wake timing and the timing of melatonin and cortisol, but those of PER2 and BMAL1 did not reach significance. The correlation between sleep timing and PER3 expression was stronger in individuals homozygous for the variant of the PER3 polymorphism that is associated with morningness. Conclusions: Individual phase differences in PER3 expression during a constant routine correlate with sleep timing during entrainment. PER3 expression in leukocytes represents a useful molecular marker of the circadian processes governing sleep-wake timing
    corecore